Calculate Sc (6(x² - y)i + 5(y² + x)}) · dr

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Calculate the line integral 

\[
\int_{C} \left( 6(x^2 - y)\vec{i} + 5(y^2 + x)\vec{j} \right) \cdot d\vec{r}
\]

given the following conditions:

**(a)** \( C \) is the circle \((x - 8)^2 + (y - 7)^2 = 16\) oriented counterclockwise.

\[
\int_{C} \left( 6(x^2 - y)\vec{i} + 5(y^2 + x)\vec{j} \right) \cdot d\vec{r} = \Box
\]

**(b)** \( C \) is the circle \((x - a)^2 + (y - b)^2 = R^2\) in the \( xy \)-plane oriented counterclockwise.

\[
\int_{C} \left( 6(x^2 - y)\vec{i} + 5(y^2 + x)\vec{j} \right) \cdot d\vec{r} = \Box
\]

**Explanation:**

- **Equation Description:**
  - The problem requires calculating the line integral of a vector field given by \((6(x^2 - y)\vec{i} + 5(y^2 + x)\vec{j})\) over different circles in the plane.

- **Circle Details:**
  - For part (a), the circle is centered at \((8, 7)\) with a radius of 4.
  - For part (b), the circle is generically centered at \((a, b)\) with a radius \(R\).

- **Orientation:**
  - Both circles are specified to be oriented counterclockwise, which impacts the direction of integration.

This exercise is designed to apply the concept of line integrals in vector calculus.
Transcribed Image Text:**Problem Statement:** Calculate the line integral \[ \int_{C} \left( 6(x^2 - y)\vec{i} + 5(y^2 + x)\vec{j} \right) \cdot d\vec{r} \] given the following conditions: **(a)** \( C \) is the circle \((x - 8)^2 + (y - 7)^2 = 16\) oriented counterclockwise. \[ \int_{C} \left( 6(x^2 - y)\vec{i} + 5(y^2 + x)\vec{j} \right) \cdot d\vec{r} = \Box \] **(b)** \( C \) is the circle \((x - a)^2 + (y - b)^2 = R^2\) in the \( xy \)-plane oriented counterclockwise. \[ \int_{C} \left( 6(x^2 - y)\vec{i} + 5(y^2 + x)\vec{j} \right) \cdot d\vec{r} = \Box \] **Explanation:** - **Equation Description:** - The problem requires calculating the line integral of a vector field given by \((6(x^2 - y)\vec{i} + 5(y^2 + x)\vec{j})\) over different circles in the plane. - **Circle Details:** - For part (a), the circle is centered at \((8, 7)\) with a radius of 4. - For part (b), the circle is generically centered at \((a, b)\) with a radius \(R\). - **Orientation:** - Both circles are specified to be oriented counterclockwise, which impacts the direction of integration. This exercise is designed to apply the concept of line integrals in vector calculus.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,