2n p(x) = E (1+x2n) n=0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Define

Find the values of x where the series converges and show that we get a continuous function on this set.

2n
p(x) = E
(1+x2n)
n=0
Transcribed Image Text:2n p(x) = E (1+x2n) n=0
Expert Solution
Step 1

Given: gx=n=0x2n1+x2n
To find: a) The values of x where the given series converges.
              b) The function x2n1+x2n is continuous.

Step 2

a) We have,
gx=n=0x2n1+x2n where nth term is bn=x2n1+x2n

Case 1
x>1 
Using the Divergence test,
limnbn=limnx2n1+x2n             =limn11x2n+1             =10+1   x>1             =1             0
Hence, the given series is divergent for x>1.


Step 3

Case 2 x=1 
Using the Divergence test,
limnbn=limnx2n1+x2n             =limn1n1+1n   x=1, x2=1             =limn12             =12             0
Hence, the given series is divergent for x=1.

Case 3 x<1 
Using the Divergence test,
limnbn=limnx2n1+x2n             =01+0   x<1, limnx2n=0             =0
Hence, the divergent test is inconclusive for x<1.

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Power Series
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,