Determine whether each of the following sequences convergent, justify!, is (@) (X₁) where I : = sin(nt/6) D с ntz dnt2 n C tdn ← where окска

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Determine whether each of the following sequences is convergent. Justify.**

**(a)** \((x_n)\) where \(x_n = \frac{\sin(n\pi/6)}{n}\)

**(b)** \(\left(\frac{c^{n+2} - d^{n+2}}{c^n + d^n}\right)\) where \(0 < c < d\)
Transcribed Image Text:**Determine whether each of the following sequences is convergent. Justify.** **(a)** \((x_n)\) where \(x_n = \frac{\sin(n\pi/6)}{n}\) **(b)** \(\left(\frac{c^{n+2} - d^{n+2}}{c^n + d^n}\right)\) where \(0 < c < d\)
Expert Solution
Step 1: Given Sequence:

(a) The given sequence is open parentheses x subscript n close parentheses space w h e r e space x subscript n equals fraction numerator sin open parentheses fraction numerator n pi over denominator 6 end fraction close parentheses over denominator n end fraction.

 Since open parentheses sin fraction numerator n pi over denominator 6 end fraction close parentheses is a bounded sequence and limit as n rightwards arrow infinity of 1 over n equals 0.

Then limit as n rightwards arrow infinity of fraction numerator sin open parentheses fraction numerator n pi over denominator 6 end fraction close parentheses over denominator n end fraction equals 0

Hence the sequence open parentheses x subscript n close parentheses is convergent.

steps

Step by step

Solved in 3 steps with 7 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,