2b. Show that if K CR is compact then K is closed.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please follow the steps to prove the statement and also show all steps clearly. Thanks for your help

### Solution to Problem 2b: Compactness and Closed Sets

**Objective:** Show that if \( K \subseteq \mathbb{R} \) is compact, then \( K \) is closed.

**Hint:** Follow these steps to demonstrate the solution.

1. **Demonstrate why proving \(\mathbb{R} \setminus K\) is open is sufficient:**

   - Since the complement of \( K \) in \(\mathbb{R}\) is open, it follows from the definition of closed sets in topological spaces that \( K \) itself is closed.

2. **Prove that \(\mathbb{R} \setminus K\) is open using the following outline:**

   - **Step 1:** Select \( x \in \mathbb{R} \setminus K \) and \( y \in K \) such that \( x \neq y \).

   - **Step 2:** Establish that there exists \(\epsilon_y > 0\) ensuring:
     \[
     D(x, \epsilon_y) \cap D(y, \epsilon_y) = \emptyset
     \]
     where \( D(a, \epsilon) \) denotes the open disk centered at \( a \) with radius \(\epsilon\).

   - **Step 3:** Prove that the collection \(\mathcal{A} = \{D(y, \epsilon_y)\}_{y \in K}\) forms an open cover of \( K \).

   - **Step 4:** Given the compactness of \( K \), show the existence of a finite subcover \(\{D(y_i, \epsilon_{y_i}) \mid i = 1, 2, \ldots, k\}\) from \(\mathcal{A}\).

   - **Step 5:** Define \(\epsilon = \min\{\epsilon_{y_i} \mid i = 1, 2, \ldots, k\} > 0\).

   - **Step 6:** Show \( D(y_i, \epsilon_{y_i}) \cap D(x, \epsilon) = \emptyset \) for each \( i = 1, 2, \ldots, k \).

   - **Step 7:** Note that:
     \[
     K \subseteq \bigcup_{y \in K
Transcribed Image Text:### Solution to Problem 2b: Compactness and Closed Sets **Objective:** Show that if \( K \subseteq \mathbb{R} \) is compact, then \( K \) is closed. **Hint:** Follow these steps to demonstrate the solution. 1. **Demonstrate why proving \(\mathbb{R} \setminus K\) is open is sufficient:** - Since the complement of \( K \) in \(\mathbb{R}\) is open, it follows from the definition of closed sets in topological spaces that \( K \) itself is closed. 2. **Prove that \(\mathbb{R} \setminus K\) is open using the following outline:** - **Step 1:** Select \( x \in \mathbb{R} \setminus K \) and \( y \in K \) such that \( x \neq y \). - **Step 2:** Establish that there exists \(\epsilon_y > 0\) ensuring: \[ D(x, \epsilon_y) \cap D(y, \epsilon_y) = \emptyset \] where \( D(a, \epsilon) \) denotes the open disk centered at \( a \) with radius \(\epsilon\). - **Step 3:** Prove that the collection \(\mathcal{A} = \{D(y, \epsilon_y)\}_{y \in K}\) forms an open cover of \( K \). - **Step 4:** Given the compactness of \( K \), show the existence of a finite subcover \(\{D(y_i, \epsilon_{y_i}) \mid i = 1, 2, \ldots, k\}\) from \(\mathcal{A}\). - **Step 5:** Define \(\epsilon = \min\{\epsilon_{y_i} \mid i = 1, 2, \ldots, k\} > 0\). - **Step 6:** Show \( D(y_i, \epsilon_{y_i}) \cap D(x, \epsilon) = \emptyset \) for each \( i = 1, 2, \ldots, k \). - **Step 7:** Note that: \[ K \subseteq \bigcup_{y \in K
Expert Solution
Step 1: compact implies closed :Proof

Given that K subset of or equal to straight real numbers is compact. we have to show that K is closed .In other words ,it is suffices to show that straight real numbers set minus K is open.

because, K space i s space c l o s e d space left right double arrow space o u t s i d e space p o i n t space o f space K space i s space n o t space l i m i t space p o i n t space o f space K

                                        left right double arrow t h e r e space e x i s t space a t l e a s t space n e i g h b o u r h o o d space o f space e a c h space o u t s i d e space p o i n t space o f space K space w h i c h space i s space d i s j o i n t space f r o m space K

                                         left right double arrow f o r space e a c h space k element of K comma there exists space delta subscript k greater than 0 space space s u c h space t h a t space k element of N subscript delta subscript k end subscript open parentheses k close parentheses subset of or equal to straight real numbers set minus K

                                          left right double arrow f o r space e a c h space k element of K comma space k space i s space i n t e r i o r space p o i n t space o f space straight real numbers set minus K.

                                           left right double arrow straight real numbers set minus K space i s space o p e n.

Thus we have to prove that straight real numbers set minus K is open.

for this let x space element of straight real numbers set minus K is arbitrary but fixed point. we have to prove that x is interior point of straight real numbers set minus K.

Now for each y element of K, we have x not equal to y

Now straight real numbers is Housdorff space .so from Housdorff propperty of straight real numbers commafor every y element of K comma there exists space epsilon subscript x y end subscript greater than 0 space s u c h space t h a t space B open parentheses y comma epsilon subscript x y end subscript close parentheses intersection B open parentheses x comma epsilon subscript x y end subscript close parentheses equals ϕ

where B open parentheses a comma delta close parentheses spacemean open open ball with centre at a and radius delta greater than 0.


trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 40 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,