(25) Let k and n be positive integers. Prove each of the following: sin (n2) dz = | cos (nx) dz = 7. b) | sin(kr) cos(nr) dr = 0. e) L. sin(kr) sin(nr) dr = | cos(ma) cos(nr) dr = 0 if m + n.
(25) Let k and n be positive integers. Prove each of the following: sin (n2) dz = | cos (nx) dz = 7. b) | sin(kr) cos(nr) dr = 0. e) L. sin(kr) sin(nr) dr = | cos(ma) cos(nr) dr = 0 if m + n.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Let k and n be positive integers. Prove each of the following:
a) π
−π
sin2(nx) dx =
π
−π
cos2(nx) dx = π.
b) π
−π
sin(kx) cos(nx) dx = 0.
c) π
−π
sin(kx) sin(nx) dx =
π
−π
cos(mx) cos(nx) dx = 0 if
m = n.

Transcribed Image Text:(25) Let k and n be positive integers. Prove each of the following:
a)
sin* (n.x) dz = |
cos (nx) dz = 7.
b)
sin(kr) cos(nr) dr = 0.
%3D
c)
sin(kr) sin(nz) dr =
/ cos(ma) cos(na) dr = 0 if
m + n.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

