(25) Let k and n be positive integers. Prove each of the following: sin (n2) dz = | cos (nx) dz = 7. b) | sin(kr) cos(nr) dr = 0. e) L. sin(kr) sin(nr) dr = | cos(ma) cos(nr) dr = 0 if m + n.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

 Let k and n be positive integers. Prove each of the following:
a)  π
−π
sin2(nx) dx =
 π
−π
cos2(nx) dx = π.
b)  π
−π
sin(kx) cos(nx) dx = 0.
c)  π
−π
sin(kx) sin(nx) dx =
 π
−π
cos(mx) cos(nx) dx = 0 if
m = n.

(25) Let k and n be positive integers. Prove each of the following:
a)
sin* (n.x) dz = |
cos (nx) dz = 7.
b)
sin(kr) cos(nr) dr = 0.
%3D
c)
sin(kr) sin(nz) dr =
/ cos(ma) cos(na) dr = 0 if
m + n.
Transcribed Image Text:(25) Let k and n be positive integers. Prove each of the following: a) sin* (n.x) dz = | cos (nx) dz = 7. b) sin(kr) cos(nr) dr = 0. %3D c) sin(kr) sin(nz) dr = / cos(ma) cos(na) dr = 0 if m + n.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,