24:2 A particle of mass m moves in a one dimensional 'box' defined such that U (2) = { = 0 < x < a elsewhere. t is known to be initially 'localised' in the left half of the box and the normalised wavefunctio representing this localised state is 0 < x < * < x < a. V (x) a Calculate the probability that a measurement of the energy of the particle yields a) the lowest energy eigenvalue of the box; b) the next highest energy eigenvalue.
24:2 A particle of mass m moves in a one dimensional 'box' defined such that U (2) = { = 0 < x < a elsewhere. t is known to be initially 'localised' in the left half of the box and the normalised wavefunctio representing this localised state is 0 < x < * < x < a. V (x) a Calculate the probability that a measurement of the energy of the particle yields a) the lowest energy eigenvalue of the box; b) the next highest energy eigenvalue.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps