24 -16 -2t tx' 16 -16) *+ (25 ()- (;)*. x(C) = C1 + c2 p16. 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Verify that the given vector is the general solution of the corresponding homogeneous system, and then solve the nonhomogeneous system. Assume that t>0.

 

24 -16
-2t
tx' =
x+
16 -16
-1-7
x(©)
= C1
-8 + c2
t16
(s)
1
+
297
16
8.
18 + c2
2.
1
t -
23
16
-7
31
x = C1
16
25
3
2
1
16
25
2
+
135 \ 16
17
t -
1
16
x = C1
1-8
+ c2
z16
297
31
()
(*).
(;).
(;)
8
125
17
1
-8
1-25
49
x = c1
+ c2
16
135
-16
697
1
16
25
2
17
1
-16
1-25
49
x = c1
18 + c2
16
99
135
-16
697
´ 17
135 \ 16.
-16
2
1
´ 16
16
25
297
23 \ 31.
Transcribed Image Text:24 -16 -2t tx' = x+ 16 -16 -1-7 x(©) = C1 -8 + c2 t16 (s) 1 + 297 16 8. 18 + c2 2. 1 t - 23 16 -7 31 x = C1 16 25 3 2 1 16 25 2 + 135 \ 16 17 t - 1 16 x = C1 1-8 + c2 z16 297 31 () (*). (;). (;) 8 125 17 1 -8 1-25 49 x = c1 + c2 16 135 -16 697 1 16 25 2 17 1 -16 1-25 49 x = c1 18 + c2 16 99 135 -16 697 ´ 17 135 \ 16. -16 2 1 ´ 16 16 25 297 23 \ 31.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Matrix Eigenvalues and Eigenvectors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,