23 and 31

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

23 and 31

### Section 12.7: Higher-Order Derivatives

---

**Example Derivation**

Given the equation:
\[ 2y = e^{x/y} \]

Differentiate both sides:
\[ \frac{d}{dx}\left(2y\right) = \frac{d}{dx}\left(e^{x/y}\right) \]

On the left:
\[ 2 \cdot \frac{dy}{dx} \]

On the right, using chain rule:
\[ \frac{e^{x/y}}{y^2} (y - x \cdot \frac{dy}{dx}) \]

**Since** \(y^3 = e^x\) (the original equation):
\[ y^2 \cdot \frac{dy}{dx} = e^x \]

**Solving for** \(\frac{dy}{dx}\):
\[ \Rightarrow \frac{dy}{dx} = \frac{2y - \frac{2}{y}}{2y^2} \]

Final expression without \(\frac{dy}{dx}\):
\[ \frac{d^2y}{dx^2} = \frac{2 \left(\frac{2}{y}\right)}{(2 - y^2)^2} \]

**Now Work Problem 31**

---

### PROBLEMS 12.7

**In Problems 1-20, find the indicated derivatives.**

1. \( y = 4x^3 - 12x^2 + (x + 2)\, y'\)
2. \( y = x + \frac{e^x}{2} + x^{-2}, y^{\prime\prime\prime} \)
3. \( y = e^{5x} + 3y^\prime \)
4. \( y = x^3 \ln(x), y^{\prime\prime\prime} \)
5. \( y = x^{3/2} + e^{3x} \)
6. \( F(g) = \ln(q + t), \frac{dF}{dg} \)
7. \( f(x) = 3 \ln x,\,  \, y_{\min} \)
8. \( y = \frac{1}{x^m} \)
9. \( f(q) = \sqrt[3]{2q^7} \)
10
Transcribed Image Text:### Section 12.7: Higher-Order Derivatives --- **Example Derivation** Given the equation: \[ 2y = e^{x/y} \] Differentiate both sides: \[ \frac{d}{dx}\left(2y\right) = \frac{d}{dx}\left(e^{x/y}\right) \] On the left: \[ 2 \cdot \frac{dy}{dx} \] On the right, using chain rule: \[ \frac{e^{x/y}}{y^2} (y - x \cdot \frac{dy}{dx}) \] **Since** \(y^3 = e^x\) (the original equation): \[ y^2 \cdot \frac{dy}{dx} = e^x \] **Solving for** \(\frac{dy}{dx}\): \[ \Rightarrow \frac{dy}{dx} = \frac{2y - \frac{2}{y}}{2y^2} \] Final expression without \(\frac{dy}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{2 \left(\frac{2}{y}\right)}{(2 - y^2)^2} \] **Now Work Problem 31** --- ### PROBLEMS 12.7 **In Problems 1-20, find the indicated derivatives.** 1. \( y = 4x^3 - 12x^2 + (x + 2)\, y'\) 2. \( y = x + \frac{e^x}{2} + x^{-2}, y^{\prime\prime\prime} \) 3. \( y = e^{5x} + 3y^\prime \) 4. \( y = x^3 \ln(x), y^{\prime\prime\prime} \) 5. \( y = x^{3/2} + e^{3x} \) 6. \( F(g) = \ln(q + t), \frac{dF}{dg} \) 7. \( f(x) = 3 \ln x,\, \, y_{\min} \) 8. \( y = \frac{1}{x^m} \) 9. \( f(q) = \sqrt[3]{2q^7} \) 10
Expert Solution
Step 1

on doing diffrentiation we will get

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning