22.) Using the parameter estimates in the JMP output, is there a problem with multicollinearity?                   YES                  NO                CANNOT ASSESS Justification:   What other method(s) may be used to assess multicollinearity?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

22.) Using the parameter estimates in the JMP output, is there a problem with multicollinearity?

                  YES                  NO                CANNOT ASSESS

Justification:

 

What other method(s) may be used to assess multicollinearity?

JMP OUTPUT- #21-24
Model
Number RSquare
RMSE
Cp
x2
1
0.9566 19.1669
2.0888
x3
1
0.7637 44.7511
82.6080
This highlight
x1
1
0.0257 90.8632
390.5179
does not mean
x2,x3
0.9604 18.8612
2.5432
anything. It is
just a quirk of
х1,х2
2
0.9578 19.4661
3.6213
х1,x3
2
0.7637 46.0439
84.5881
JMP.
х1,x2,x3
3
0.9617 19.1198
4.0000
Figure 1: Table of Possible Predictive Models
Parameter Estimates
Term
Estimate Std Error t Ratio Prob> |t|
VIF
Intercept 9.6002837
38.54101
0.25
0.8067
х1
-1.216878
1.188857
-1.02
0.3223
1.0660932
x2
5.3978072
0.56296
9.59
<.0001* 3.9067774
x3
-1.374817 1.720724
-0.80
0.4368
15.600942
x4
1.3419933
0.789778
1.70
0.1099
13.067958
Figure 2: Parameter Estimates for x1, x2, x3, and x4
6-
6-
Positive
4
4
-4.
-4-
Negative
Negative
-6-
-6-
-8
30.0
32.5
35.0
-8
30.0
32.5
35.0
Figure 3: Studentized Residual Plots A (Left) and B (Right)
SLR Residual in Y
QR Residual in Y
Transcribed Image Text:JMP OUTPUT- #21-24 Model Number RSquare RMSE Cp x2 1 0.9566 19.1669 2.0888 x3 1 0.7637 44.7511 82.6080 This highlight x1 1 0.0257 90.8632 390.5179 does not mean x2,x3 0.9604 18.8612 2.5432 anything. It is just a quirk of х1,х2 2 0.9578 19.4661 3.6213 х1,x3 2 0.7637 46.0439 84.5881 JMP. х1,x2,x3 3 0.9617 19.1198 4.0000 Figure 1: Table of Possible Predictive Models Parameter Estimates Term Estimate Std Error t Ratio Prob> |t| VIF Intercept 9.6002837 38.54101 0.25 0.8067 х1 -1.216878 1.188857 -1.02 0.3223 1.0660932 x2 5.3978072 0.56296 9.59 <.0001* 3.9067774 x3 -1.374817 1.720724 -0.80 0.4368 15.600942 x4 1.3419933 0.789778 1.70 0.1099 13.067958 Figure 2: Parameter Estimates for x1, x2, x3, and x4 6- 6- Positive 4 4 -4. -4- Negative Negative -6- -6- -8 30.0 32.5 35.0 -8 30.0 32.5 35.0 Figure 3: Studentized Residual Plots A (Left) and B (Right) SLR Residual in Y QR Residual in Y
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Research Ethics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman