2.45 • BIO The rocket-driven sled Sonic Wind No. 2, used for investigating the physiological effects of large accelerations, runs on a straight, level track 1070 m (3500 ft) long. Starting from rest, it can reach a speed of 224 m/s(500 mi/h) in 0.900 s. (a) Compute the acceleration in m/s?, assuming that it is constant. (b) What is the ratio of this acceleration to that of a freely falling body (g)? (c) What distance is covered in 0.900 s? (d) A magazine article states that at the end of a certain run, the speed of the sled de- creased from 283 m/s (632 mi/h) to zero in 1.40 s and that during this time the magnitude of the acceleration was greater than 40g. Are these figures consistent?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question
2.45 • BIO The rocket-driven sled Sonic Wind No. 2, used for
investigating the physiological effects of large accelerations, runs
on a straight, level track 1070 m (3500 ft) long. Starting from rest,
it can reach a speed of 224 m/s(500 mi/h) in 0.900 s. (a) Compute
the acceleration in m/s?, assuming that it is constant. (b) What is
the ratio of this acceleration to that of a freely falling body (g)?
(c) What distance is covered in 0.900 s? (d) A magazine article
states that at the end of a certain run, the speed of the sled de-
creased from 283 m/s (632 mi/h) to zero in 1.40 s and that during
this time the magnitude of the acceleration was greater than 40g.
Are these figures consistent?
Transcribed Image Text:2.45 • BIO The rocket-driven sled Sonic Wind No. 2, used for investigating the physiological effects of large accelerations, runs on a straight, level track 1070 m (3500 ft) long. Starting from rest, it can reach a speed of 224 m/s(500 mi/h) in 0.900 s. (a) Compute the acceleration in m/s?, assuming that it is constant. (b) What is the ratio of this acceleration to that of a freely falling body (g)? (c) What distance is covered in 0.900 s? (d) A magazine article states that at the end of a certain run, the speed of the sled de- creased from 283 m/s (632 mi/h) to zero in 1.40 s and that during this time the magnitude of the acceleration was greater than 40g. Are these figures consistent?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Displacement, velocity and acceleration
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON