(2.1) We first estimate the following model (you may assume all of the OLS assumptions hold): Iprice; Bo + Bicrime; + B₂lnox; + Bildist; + Barooms; +35stratio; + ui OLS results (robust standard errors in parentheses): Iprice=11.005 -0.015 crime - 0.901 Inox -0.215 ldist +0.247-rooms- (0.002) (0.052) (0.024) (0.122) (0.368) 0.042-stratio (0.004) n = 506, R² = 0.656, R² = 0.653 For each of the slope coefficient estimates, discuss whether they have the expected sign. If a slope coefficient estimate does not have the expected sign, briefly explain what might be going on (no calculations are necessary). (2.2) Using the results from (2.1), carry out two-sided hypothesis tests on the estimates of 3₁ and 3₂ (at the 1% level). Interpret these coefficient estimates. (2.3) We next estimate the following model (you may assume all of the OLS assumptions hold): Iprice = Bo+B₁crime; + ß₂lnox; + ßäldist; + ßrooms; + Brooms? + Bestratio; + u OLS results (robust standard errors in parentheses): Iprice 13.656 -0.016-crime - 0.839- Inox -0.164 ldist - 0.676-rooms + (0.786) (0.003) (0.123) (0.053) (0.244) 0.072 rooms² -0.036-stratio (0.019) (0.005) n = 506, R² = 0.681, R² = 0.677 Does the coefficient estimate on rooms have the expected sign?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

Please help me

(2.1) We first estimate the following model (you may assume all of the OLS assumptions
hold):
Iprice; = Bo + Bịcrime; + Balnox; + Bzldist; + Barooms; + Bgstratio; + u;
OLS results (robust standard errors in parentheses):
Īprice
= 11.005 – 0.015 · crime – 0.901 · Inox – 0.215 · Idist +0.247 · rooms
(0.368)
(0.002)
(0.122)
(0.052)
(0.024)
0.042 · stratio
(0.004)
n = 506, R² = 0.656, Ř² = 0.653
For each of the slope coefficient estimates, discuss whether they have the expected
sign. If a slope coefficient estimate does not have the expected sign, briefly explain
what might be going on (no calculations are necessary).
(2.2) Using the results from (2.1), carry out two-sided hypothesis tests on the estimates of
Bị and 32 (at the 1% level). Interpret these coefficient estimates.
(2.3) We next estimate the following model (you may assume all of the OLS assumptions
hold):
lprice;
Bo + Bicrime; + Balnox; + Bzldist; + Barooms; + Bzrooms? +
Bostratio; + ui
OLS results (robust standard errors in parentheses):
Īprice
= 13.656 – 0.016 · crime – 0.839 - Inox – 0.164 · Idist – 0.676 · rooms +
(0.786)
(0.003)
(0.123)
(0.053)
(0.244)
0.072 - rooms? – 0.036 - stratio
(0.019)
(0.005)
506, R2 = 0.681, R² = 0.677
n =
Does the coefficient estimate on rooms have the expected sign?
Transcribed Image Text:(2.1) We first estimate the following model (you may assume all of the OLS assumptions hold): Iprice; = Bo + Bịcrime; + Balnox; + Bzldist; + Barooms; + Bgstratio; + u; OLS results (robust standard errors in parentheses): Īprice = 11.005 – 0.015 · crime – 0.901 · Inox – 0.215 · Idist +0.247 · rooms (0.368) (0.002) (0.122) (0.052) (0.024) 0.042 · stratio (0.004) n = 506, R² = 0.656, Ř² = 0.653 For each of the slope coefficient estimates, discuss whether they have the expected sign. If a slope coefficient estimate does not have the expected sign, briefly explain what might be going on (no calculations are necessary). (2.2) Using the results from (2.1), carry out two-sided hypothesis tests on the estimates of Bị and 32 (at the 1% level). Interpret these coefficient estimates. (2.3) We next estimate the following model (you may assume all of the OLS assumptions hold): lprice; Bo + Bicrime; + Balnox; + Bzldist; + Barooms; + Bzrooms? + Bostratio; + ui OLS results (robust standard errors in parentheses): Īprice = 13.656 – 0.016 · crime – 0.839 - Inox – 0.164 · Idist – 0.676 · rooms + (0.786) (0.003) (0.123) (0.053) (0.244) 0.072 - rooms? – 0.036 - stratio (0.019) (0.005) 506, R2 = 0.681, R² = 0.677 n = Does the coefficient estimate on rooms have the expected sign?
Problem 2. More on housing prices.
For a sample of 506 communities in the Seattle area, we examine the effect the crime rate
and number of rooms have on the median price of houses.
Here is a description of the variables in the data set:
Variable Description
price
median housing price, $
crimes committed per capita
nitrous oxide concentration (measure of pollution)
average number of rooms
weighted distance to 5 employment centers
average student-teacher ratio
log(price)
log(nox)
log (dist)
square of rooms
crime
nox
rooms
dist
stratio
Iprice
Inox
ldist
rooms2
rooms3
cube of rooms
Sample summary
price
crime
nox
rooms
dist
stratio
Iprice
Inox
Idist
rooms2
rooms3
count
506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000
mean 22511.509881
3.611536
5.549783
6.284051
3.795751
18.459289
9.941057
1.693091
1.188233 39.981964 257.579839
std
9208.856171
8.590247
1.158395
0.702594
2.106137
2.165820
0.409255
0.201410
0.539501
9.078571
90.472442
min
5000.000000
0.006000
3.850000
3.560000
1.130000
12.600000
8.517193
1.348073
0.122218
12.673599
45.118012
25% 16850.000000
0.082000
4.490000
5.882500
2.100000
17.400000
9.732093
1.501853
0.741937
34.603826 203.557226
50% 21200.000000
0.256500
5.380000
6.210000
3.210000
19.100000
9.961757
1.682688
1.166266 38.564102 239.483061
75% 24999.00000
3.677000
6.240000
6.620000
5.187500
20.200001
10.126591
1.830980
1.646223
43.824398 290.117515
max 50001.000000 88.975998
8.710000
8.780000
12.130000
22.000000
10.819798
2.164472
2.495682
77.088394 676.836083
Sample correlation matrix
price
crime
dist
stratio
Iprice
Inox
Idist
rooms2
rooms3
nox
rooms
price 1.000000 -0.387919 -0.426037
0.695780
0.249339 -0.503340
0.953320 -0.429447
0.291063
0.718616
0.730700
crime -0.387919
1.000000
0.421152 -0.218816 -0.379909
0.288691 -0.527495
0.429639 -0.464472 -0.203314 -0.187702
nox -0.426037
0.421152
1.000000 -0.302828 -0.770222
0.186863 -0.508767
0.993943 -0.832844 -0.284613 -0.263683
rooms 0.695780 -0.218816 -0.302828
1.000000
0.205410 -0.354008
0.632909 -0.304988
0.256589
0.994530
0.979986
dist
0.249339 -0.379909 -0.770222
0.205410
1.000000 -0.229269
0.342008 -0.808795
0.964677
0.183875
0.161220
stratio -0.503340
0.288691
0.186863 -0.354008 -0.229269
1.000000 -0.497635
0.227910 -0.234807 -0.364044 -0.369048
Iprice 0.953320 -0.527495 -0.508767
0.632909
0.342008 -0.497635
1.000000 -0.513371
0.404131
0.643087
0.643853
Inox -0.429447
0.429639
0.993943 -0.304988 -0.808795
0.227910 -0.513371
1.000000 -0.860750 -0.286794 -0.265755
Idist
0.291063 -0.464472 -0.832844
0.256589
0.964677 -0.234807
0.404131 -0.860750
1.000000
0.229922
0.202454
rooms2
0.718616 -0.203314 -0.284613
0.994530
0.183875 -0.364044
0.643087 -0.286794
0.229922
1.000000
0.995355
rooms3
0.730700 -0.187702 -0.263683
0.979986
0.161220 -0.369048
0.643853 -0.265755
0.202454
0.995355
1.000000
Transcribed Image Text:Problem 2. More on housing prices. For a sample of 506 communities in the Seattle area, we examine the effect the crime rate and number of rooms have on the median price of houses. Here is a description of the variables in the data set: Variable Description price median housing price, $ crimes committed per capita nitrous oxide concentration (measure of pollution) average number of rooms weighted distance to 5 employment centers average student-teacher ratio log(price) log(nox) log (dist) square of rooms crime nox rooms dist stratio Iprice Inox ldist rooms2 rooms3 cube of rooms Sample summary price crime nox rooms dist stratio Iprice Inox Idist rooms2 rooms3 count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 mean 22511.509881 3.611536 5.549783 6.284051 3.795751 18.459289 9.941057 1.693091 1.188233 39.981964 257.579839 std 9208.856171 8.590247 1.158395 0.702594 2.106137 2.165820 0.409255 0.201410 0.539501 9.078571 90.472442 min 5000.000000 0.006000 3.850000 3.560000 1.130000 12.600000 8.517193 1.348073 0.122218 12.673599 45.118012 25% 16850.000000 0.082000 4.490000 5.882500 2.100000 17.400000 9.732093 1.501853 0.741937 34.603826 203.557226 50% 21200.000000 0.256500 5.380000 6.210000 3.210000 19.100000 9.961757 1.682688 1.166266 38.564102 239.483061 75% 24999.00000 3.677000 6.240000 6.620000 5.187500 20.200001 10.126591 1.830980 1.646223 43.824398 290.117515 max 50001.000000 88.975998 8.710000 8.780000 12.130000 22.000000 10.819798 2.164472 2.495682 77.088394 676.836083 Sample correlation matrix price crime dist stratio Iprice Inox Idist rooms2 rooms3 nox rooms price 1.000000 -0.387919 -0.426037 0.695780 0.249339 -0.503340 0.953320 -0.429447 0.291063 0.718616 0.730700 crime -0.387919 1.000000 0.421152 -0.218816 -0.379909 0.288691 -0.527495 0.429639 -0.464472 -0.203314 -0.187702 nox -0.426037 0.421152 1.000000 -0.302828 -0.770222 0.186863 -0.508767 0.993943 -0.832844 -0.284613 -0.263683 rooms 0.695780 -0.218816 -0.302828 1.000000 0.205410 -0.354008 0.632909 -0.304988 0.256589 0.994530 0.979986 dist 0.249339 -0.379909 -0.770222 0.205410 1.000000 -0.229269 0.342008 -0.808795 0.964677 0.183875 0.161220 stratio -0.503340 0.288691 0.186863 -0.354008 -0.229269 1.000000 -0.497635 0.227910 -0.234807 -0.364044 -0.369048 Iprice 0.953320 -0.527495 -0.508767 0.632909 0.342008 -0.497635 1.000000 -0.513371 0.404131 0.643087 0.643853 Inox -0.429447 0.429639 0.993943 -0.304988 -0.808795 0.227910 -0.513371 1.000000 -0.860750 -0.286794 -0.265755 Idist 0.291063 -0.464472 -0.832844 0.256589 0.964677 -0.234807 0.404131 -0.860750 1.000000 0.229922 0.202454 rooms2 0.718616 -0.203314 -0.284613 0.994530 0.183875 -0.364044 0.643087 -0.286794 0.229922 1.000000 0.995355 rooms3 0.730700 -0.187702 -0.263683 0.979986 0.161220 -0.369048 0.643853 -0.265755 0.202454 0.995355 1.000000
Expert Solution
steps

Step by step

Solved in 7 steps with 1 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman