2. Write a program in MATLAB to numerically solve for the concentration distribution in a duct of length l = 10 m with insulated sides and with the boundary and initial conditions given in problem 1. Plot the concentration distribution in the duct at t = 100 s and at the steady-state value. Be sure to indicate your method used, time step, spatial grid size and Courant number and how you decided which values to use. (This will likely involve plots, tables or other means of justification.) You may let co = 3 g/m³ and D 0.008 m²/s. Compare your results with the analytical solution (found in problem 1) by plotting the analytical result on the same graph. = For this problem, you may use either the explicit or the implicit method. Be sure to indicate which you used. For extra credit, you can try it using both methods. In order to get the extra credit: (a) Clearly present the solutions for each method, both in your discussion (how you did it, how you picked your Courant number, how you picked your spatial grid size), and in showing the results. (b) Show SOMETHING that is different in the results.
2. Write a program in MATLAB to numerically solve for the concentration distribution in a duct of length l = 10 m with insulated sides and with the boundary and initial conditions given in problem 1. Plot the concentration distribution in the duct at t = 100 s and at the steady-state value. Be sure to indicate your method used, time step, spatial grid size and Courant number and how you decided which values to use. (This will likely involve plots, tables or other means of justification.) You may let co = 3 g/m³ and D 0.008 m²/s. Compare your results with the analytical solution (found in problem 1) by plotting the analytical result on the same graph. = For this problem, you may use either the explicit or the implicit method. Be sure to indicate which you used. For extra credit, you can try it using both methods. In order to get the extra credit: (a) Clearly present the solutions for each method, both in your discussion (how you did it, how you picked your Courant number, how you picked your spatial grid size), and in showing the results. (b) Show SOMETHING that is different in the results.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
PLEASE HELP WITH PROBLEM 2 WITH MATLAB CODING! THANK YOU
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,