2. Verify: sin x+tan x %3D sin2x sec x cscx+cotx

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
Please show all work you used to get the answer.
## Trigonometric Identity Verification

**Problem Statement:**
Verify the following trigonometric identity:

\[
\frac{\sin x + \tan x}{\csc x + \cot x} = \sin^2 x \cdot \sec x
\]

**Steps for Verification:**

1. **Rewrite Trigonometric Functions:**
   - Recall the definitions of the trigonometric functions:
     - \(\tan x = \frac{\sin x}{\cos x}\)
     - \(\csc x = \frac{1}{\sin x}\)
     - \(\cot x = \frac{\cos x}{\sin x}\)
     - \(\sec x = \frac{1}{\cos x}\)

2. **Simplify the Expression:**
   - Substitute the above identities into the equation:
   - \(\frac{\sin x + \frac{\sin x}{\cos x}}{\frac{1}{\sin x} + \frac{\cos x}{\sin x}}\)

3. **Common Denominators:**
   - Simplify the numerator and the denominator:
   - Numerator: \(\sin x + \frac{\sin x}{\cos x} = \frac{\sin x \cos x + \sin x}{\cos x}\)
   - Denominator: \(\frac{1 + \cos x}{\sin x}\)

4. **Dividing Fractions:**
   - When dividing fractions, multiply by the reciprocal:
   - \(\frac{\frac{\sin x (\cos x + 1)}{\cos x}}{\frac{1 + \cos x}{\sin x}} = \frac{\sin x (\cos x + 1)}{\cos x} \cdot \frac{\sin x}{1 + \cos x}\)

5. **Canceling Common Factors:**
   - Simplify by canceling \((1 + \cos x)\) from numerator and denominator:
   - \(\frac{\sin^2 x}{\cos x} = \sin^2 x \cdot \sec x\)

Thus, the identity has been verified.

**Conclusion:**
The given expression simplifies correctly to the desired result, verifying the identity is true.
Transcribed Image Text:## Trigonometric Identity Verification **Problem Statement:** Verify the following trigonometric identity: \[ \frac{\sin x + \tan x}{\csc x + \cot x} = \sin^2 x \cdot \sec x \] **Steps for Verification:** 1. **Rewrite Trigonometric Functions:** - Recall the definitions of the trigonometric functions: - \(\tan x = \frac{\sin x}{\cos x}\) - \(\csc x = \frac{1}{\sin x}\) - \(\cot x = \frac{\cos x}{\sin x}\) - \(\sec x = \frac{1}{\cos x}\) 2. **Simplify the Expression:** - Substitute the above identities into the equation: - \(\frac{\sin x + \frac{\sin x}{\cos x}}{\frac{1}{\sin x} + \frac{\cos x}{\sin x}}\) 3. **Common Denominators:** - Simplify the numerator and the denominator: - Numerator: \(\sin x + \frac{\sin x}{\cos x} = \frac{\sin x \cos x + \sin x}{\cos x}\) - Denominator: \(\frac{1 + \cos x}{\sin x}\) 4. **Dividing Fractions:** - When dividing fractions, multiply by the reciprocal: - \(\frac{\frac{\sin x (\cos x + 1)}{\cos x}}{\frac{1 + \cos x}{\sin x}} = \frac{\sin x (\cos x + 1)}{\cos x} \cdot \frac{\sin x}{1 + \cos x}\) 5. **Canceling Common Factors:** - Simplify by canceling \((1 + \cos x)\) from numerator and denominator: - \(\frac{\sin^2 x}{\cos x} = \sin^2 x \cdot \sec x\) Thus, the identity has been verified. **Conclusion:** The given expression simplifies correctly to the desired result, verifying the identity is true.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning