2. Using the procedure described in this module, a student determined the percent KHP in an impure sample of KHP. A 3.150-g sample of impure KHP required 41.50 mL of 0.1352M NaOH solution for titration. (a) Calculate the number of moles of NaOH required for the titration. (b) Calculate the number of moles of KHP present in the impure sample of KHP. (c) Calculate the number of grams of KHP present in the impure sample. (d) Calculate the percent of KHP in the impure sample, using Equation 8. Equation 8: percent KHP in the impure sample, % = ( mass of KHP in the sample,g/ mass of sample analyzed, g) (100%)
Ionic Equilibrium
Chemical equilibrium and ionic equilibrium are two major concepts in chemistry. Ionic equilibrium deals with the equilibrium involved in an ionization process while chemical equilibrium deals with the equilibrium during a chemical change. Ionic equilibrium is established between the ions and unionized species in a system. Understanding the concept of ionic equilibrium is very important to answer the questions related to certain chemical reactions in chemistry.
Arrhenius Acid
Arrhenius acid act as a good electrolyte as it dissociates to its respective ions in the aqueous solutions. Keeping it similar to the general acid properties, Arrhenius acid also neutralizes bases and turns litmus paper into red.
Bronsted Lowry Base In Inorganic Chemistry
Bronsted-Lowry base in inorganic chemistry is any chemical substance that can accept a proton from the other chemical substance it is reacting with.
2. Using the procedure described in this module, a student determined the percent KHP in an impure sample of KHP. A 3.150-g sample of impure KHP required 41.50 mL of 0.1352M NaOH solution for titration.
(a) Calculate the number of moles of NaOH required for the titration.
(b) Calculate the number of moles of KHP present in the impure sample of KHP.
(c) Calculate the number of grams of KHP present in the impure sample.
(d) Calculate the percent of KHP in the impure sample, using Equation 8.
Equation 8:
percent KHP in the impure sample, % = ( mass of KHP in the sample,g/ mass of sample analyzed, g) (100%)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps