2. Use the product rule (and maybe the chain rule) to find the derivatives of the following functions. 4. Find the derivatives of the following functions. a) y = x sin(x) b) g = tet x3 a) y c) h(y) = e cos (y) (x+3)5 b) g = (t+1) √t − 1 d) s(t) = 3t ln (t) e) f(x)=sin(x) In (x) f) u (z) = e² (z² + 1) c) h(y)= = 2y - 1 √y +1 d) s(t): 420 (t+ 2)² (3t4t5) 42 (8 − t)¹ 8 g) y = (3 — 4x²)x−1/2 h) y = (1 + sin (0)) (1 − sin (0)) 3 x2 -5 e) f(x) = i) g(z) = √√zln (z) j) f(x) = e²+1 (2x+1) 2.3 - x f) u (z) = 3z4 5z+2 k) A = cos (5s) sin (3s) 1) a(t) = t² In (t²) g) y = cos (5 sin (2)) h) y = 4 sin (√√1 + √ē) m) h(x) = (x² + 3x) (ex − 1) (√x − 3x) o) y = (t + 1) (√√t² − 1) ¹ 1 i) g(z) = = n) p(s) = (e3x+5) In (cos (s))² p) f (0) = csc (0) tan (0) cot (0) sin (0) 5. If you really want to practice your algebra, find the second derivative of all the problems on this worksheet. 1+ cos² (7x) j) f(x) x3+1 3. Use the quotient rule to find the derivatives of the following functions. x+1 a) y = x-1 sin (t) b) g = t c) h(y): e) f(x) = sin (y) t²+1 d) s(t): = еу t +1 cos (x) In (z) f) u (z) √x z g) y = Ꮖ COS (x i) g(z) = 1 z2 √z h) y = j) f(x) 0+ sin (0) cos (0) = x23x1 2 3 d Chain Rule: · (ƒ (g(x))) = ƒ′ (g(x)) · g′ (x) dx d Product Rule: | (f(x)g(x)) = f'(x)g(x) + f(x)g'(x) dx Quotient Rule: d dx (f(x)) = f'(x)9(x) = f(x)9′(x) 1. Use the chain rule to find the derivatives of the following functions. a) y = √√√5-x c) h(y) = (1+2y) 4 e) f(x) = cos(x) g) y = ln (sin (x)) i) g(z) = √ln (x) k) A = (csc (s) + cot (s))-1 m) h(x) = sin² (3x) o) y = sin³ (3 + 4) b) g = 3/2t-t² d) s(t) = (3 — 2t²)-5 f) u (z) = sin (3z² - 2z+1) h) y = tan³ (0) j) f(x) sin (5x) cos (2x) 1) a(t) = (sin (t) + cos (t))5 n) p(s): = In (cos (s))² p) f (0) = sin (√) 1

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
2. Use the product rule (and maybe the chain rule) to find the derivatives of the following functions.
4. Find the derivatives of the following functions.
a) y = x sin(x)
b) g = tet
x3
a) y
c) h(y) = e cos (y)
(x+3)5
b) g = (t+1) √t − 1
d) s(t) = 3t ln (t)
e) f(x)=sin(x) In (x)
f) u (z) = e² (z² + 1)
c) h(y)=
=
2y - 1
√y +1
d) s(t):
420
(t+ 2)² (3t4t5) 42
(8 − t)¹ 8
g) y = (3 — 4x²)x−1/2
h) y =
(1 + sin (0)) (1 − sin (0))
3
x2
-5
e) f(x) =
i) g(z) = √√zln (z)
j) f(x) = e²+1 (2x+1)
2.3
- x
f) u (z) =
3z4
5z+2
k) A = cos (5s) sin (3s)
1) a(t) = t² In (t²)
g) y = cos (5 sin
(2))
h) y = 4 sin (√√1 + √ē)
m) h(x) = (x² + 3x) (ex − 1) (√x − 3x)
o) y = (t + 1) (√√t² − 1) ¹
1
i) g(z) =
=
n) p(s) = (e3x+5) In (cos (s))²
p) f (0) = csc (0) tan (0) cot (0) sin (0)
5. If you really want to practice your algebra, find the second derivative of all the problems on this
worksheet.
1+ cos² (7x)
j) f(x)
x3+1
3. Use the quotient rule to find the derivatives of the following functions.
x+1
a) y =
x-1
sin (t)
b) g =
t
c) h(y):
e) f(x)
=
sin (y)
t²+1
d) s(t):
=
еу
t +1
cos (x)
In (z)
f) u (z)
√x
z
g) y =
Ꮖ
COS (x
i) g(z)
=
1
z2
√z
h) y =
j) f(x)
0+ sin (0)
cos (0)
=
x23x1
2
3
Transcribed Image Text:2. Use the product rule (and maybe the chain rule) to find the derivatives of the following functions. 4. Find the derivatives of the following functions. a) y = x sin(x) b) g = tet x3 a) y c) h(y) = e cos (y) (x+3)5 b) g = (t+1) √t − 1 d) s(t) = 3t ln (t) e) f(x)=sin(x) In (x) f) u (z) = e² (z² + 1) c) h(y)= = 2y - 1 √y +1 d) s(t): 420 (t+ 2)² (3t4t5) 42 (8 − t)¹ 8 g) y = (3 — 4x²)x−1/2 h) y = (1 + sin (0)) (1 − sin (0)) 3 x2 -5 e) f(x) = i) g(z) = √√zln (z) j) f(x) = e²+1 (2x+1) 2.3 - x f) u (z) = 3z4 5z+2 k) A = cos (5s) sin (3s) 1) a(t) = t² In (t²) g) y = cos (5 sin (2)) h) y = 4 sin (√√1 + √ē) m) h(x) = (x² + 3x) (ex − 1) (√x − 3x) o) y = (t + 1) (√√t² − 1) ¹ 1 i) g(z) = = n) p(s) = (e3x+5) In (cos (s))² p) f (0) = csc (0) tan (0) cot (0) sin (0) 5. If you really want to practice your algebra, find the second derivative of all the problems on this worksheet. 1+ cos² (7x) j) f(x) x3+1 3. Use the quotient rule to find the derivatives of the following functions. x+1 a) y = x-1 sin (t) b) g = t c) h(y): e) f(x) = sin (y) t²+1 d) s(t): = еу t +1 cos (x) In (z) f) u (z) √x z g) y = Ꮖ COS (x i) g(z) = 1 z2 √z h) y = j) f(x) 0+ sin (0) cos (0) = x23x1 2 3
d
Chain Rule:
· (ƒ (g(x))) = ƒ′ (g(x)) · g′ (x)
dx
d
Product Rule:
| (f(x)g(x)) = f'(x)g(x) + f(x)g'(x)
dx
Quotient Rule:
d
dx
(f(x)) = f'(x)9(x) = f(x)9′(x)
1. Use the chain rule to find the derivatives of the following functions.
a) y = √√√5-x
c) h(y) = (1+2y) 4
e) f(x) = cos(x)
g) y = ln (sin (x))
i) g(z) = √ln (x)
k) A = (csc (s) + cot (s))-1
m) h(x) = sin² (3x)
o) y = sin³ (3 + 4)
b) g = 3/2t-t²
d) s(t) = (3 — 2t²)-5
f) u (z) = sin (3z² - 2z+1)
h) y = tan³ (0)
j) f(x)
sin (5x)
cos (2x)
1) a(t) = (sin (t) + cos (t))5
n) p(s): = In (cos (s))²
p) f (0) =
sin (√)
1
Transcribed Image Text:d Chain Rule: · (ƒ (g(x))) = ƒ′ (g(x)) · g′ (x) dx d Product Rule: | (f(x)g(x)) = f'(x)g(x) + f(x)g'(x) dx Quotient Rule: d dx (f(x)) = f'(x)9(x) = f(x)9′(x) 1. Use the chain rule to find the derivatives of the following functions. a) y = √√√5-x c) h(y) = (1+2y) 4 e) f(x) = cos(x) g) y = ln (sin (x)) i) g(z) = √ln (x) k) A = (csc (s) + cot (s))-1 m) h(x) = sin² (3x) o) y = sin³ (3 + 4) b) g = 3/2t-t² d) s(t) = (3 — 2t²)-5 f) u (z) = sin (3z² - 2z+1) h) y = tan³ (0) j) f(x) sin (5x) cos (2x) 1) a(t) = (sin (t) + cos (t))5 n) p(s): = In (cos (s))² p) f (0) = sin (√) 1
Expert Solution
steps

Step by step

Solved in 2 steps with 11 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning