2. Now add all single-digit numbers from Step 1. 4 + 4 + 8 + 2 + 3 + 1 + 7 + 8 = 37 3. Add all digits in the odd places from right to left in the card number. 6 + 6 + 0 + 8 + 0 + 7 + 8 + 3 = 38 4. Sum the results from Step 2 and Step 3. 37 + 38 = 75 5. If the result from Step 4 is divisible by 10, the card number is valid; otherwise, it is invalid. For example, the number 4388576018402626 is invalid, but the number 4388576018410707 is valid.

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
2. Now add all single-digit numbers from Step 1.
4 + 4 + 8 + 2 + 3 + 1 + 7 + 8 = 37
3. Add all digits in the odd places from right to left in the card number.
6 + 6 + 0 + 8 + 0 + 7 + 8 + 3 = 38
4. Sum the results from Step 2 and Step 3.
37 + 38 = 75
5. If the result from Step 4 is divisible by 10, the card number is valid; otherwise,
it is invalid. For example, the number 4388576018402626 is invalid, but the
number 4388576018410707 is valid.
Write a program that prompts the user to enter a credit card number as a long
integer. Display whether the number is valid or invalid. Design your program to
use the following methods:
/** Return true if the card number is valid */
public static boolean isValid(long number)
/** Get the result from Step 2 */
public static int sumofDoubleEvenPlace(long number)
/** Return this number if it is a single digit, otherwise,
* return the sum of the two digits */
public static int getDigit(int number)
/** Return sum of odd-place digits in number */
public static int sumof0ddPlace(long number)
/** Return true if the digit d is a prefix for number */
public static boolean prefixMatched(long number, int d)
/** Return the number of digits in d */
public static int getSize(long d)
/** Return the first k number of digits from number. If the
* number of digits in number is less than k, return number. */
public static long getPrefix(long number, int k)
Here are sample runs of the program: (You may also implement this program by
reading the input as a string and processing the string to validate the credit card.)
Transcribed Image Text:2. Now add all single-digit numbers from Step 1. 4 + 4 + 8 + 2 + 3 + 1 + 7 + 8 = 37 3. Add all digits in the odd places from right to left in the card number. 6 + 6 + 0 + 8 + 0 + 7 + 8 + 3 = 38 4. Sum the results from Step 2 and Step 3. 37 + 38 = 75 5. If the result from Step 4 is divisible by 10, the card number is valid; otherwise, it is invalid. For example, the number 4388576018402626 is invalid, but the number 4388576018410707 is valid. Write a program that prompts the user to enter a credit card number as a long integer. Display whether the number is valid or invalid. Design your program to use the following methods: /** Return true if the card number is valid */ public static boolean isValid(long number) /** Get the result from Step 2 */ public static int sumofDoubleEvenPlace(long number) /** Return this number if it is a single digit, otherwise, * return the sum of the two digits */ public static int getDigit(int number) /** Return sum of odd-place digits in number */ public static int sumof0ddPlace(long number) /** Return true if the digit d is a prefix for number */ public static boolean prefixMatched(long number, int d) /** Return the number of digits in d */ public static int getSize(long d) /** Return the first k number of digits from number. If the * number of digits in number is less than k, return number. */ public static long getPrefix(long number, int k) Here are sample runs of the program: (You may also implement this program by reading the input as a string and processing the string to validate the credit card.)
(Financial: credit card number validation) Credit card numbers follow certain pat-
terns. A credit card number must have between 13 and 16 digits. It must start with:
4 for Visa cards
5 for Master cards
37 for American Express cards
6 for Discover cards
In 1954, Hans Luhn of IBM proposed an algorithm for validating credit card
numbers. The algorithm is useful to determine whether a card number is entered
correctly or whether a credit card is scanned correctly by a scanner. Credit card
numbers are generated following this validity check, commonly known as the
Luhn check or the Mod 10 check, which can be described as follows (for illustra-
tion, consider the card number 4388576018402626):
1. Double every second digit from right to left. If doubling of a digit results in a
two-digit number, add up the two digits to get a single-digit number.
4388576018402626
→ 2 * 2 = 4
→ 2 * 2 = 4
→ 4 * 2 = 8
→ 1 * 2 = 2
6 * 2 = 12 (1+ 2 = 3)
→ 5 * 2 = 10 (1+ 0 = 1)
→ 8 * 2 = 16 (1 + 6 = 7)
→ 4 * 2 = 8
Transcribed Image Text:(Financial: credit card number validation) Credit card numbers follow certain pat- terns. A credit card number must have between 13 and 16 digits. It must start with: 4 for Visa cards 5 for Master cards 37 for American Express cards 6 for Discover cards In 1954, Hans Luhn of IBM proposed an algorithm for validating credit card numbers. The algorithm is useful to determine whether a card number is entered correctly or whether a credit card is scanned correctly by a scanner. Credit card numbers are generated following this validity check, commonly known as the Luhn check or the Mod 10 check, which can be described as follows (for illustra- tion, consider the card number 4388576018402626): 1. Double every second digit from right to left. If doubling of a digit results in a two-digit number, add up the two digits to get a single-digit number. 4388576018402626 → 2 * 2 = 4 → 2 * 2 = 4 → 4 * 2 = 8 → 1 * 2 = 2 6 * 2 = 12 (1+ 2 = 3) → 5 * 2 = 10 (1+ 0 = 1) → 8 * 2 = 16 (1 + 6 = 7) → 4 * 2 = 8
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Binary numbers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education