2. Linear Equations (a) Let k be a constant. For unknown x, y, z, solve the system x+y+z = 1,2x+y+z = 5, 6x + y + z = k. (b) Let k be a constant. For unknown x, y, z, solve the system x + y + kz ky + z = : 1, kx + y + z = -2. (c) Show that u, v, w is in span{u + v, 2u + 3v, 4v +6w}. = 1,x+

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Problem number 2 please. Thanks for the help. 

## Vectors and Geometry

Let \( A = (0, 1, 3), B = (0, 6, 6), C = (3, -5, 5) \), and \( O = (0, 0, 0) \).

1. **(a)**
   - Let \( \mathbf{u} = \overrightarrow{AB}, \mathbf{v} = \overrightarrow{BC} \).
   - (1) Simplify \( 2\mathbf{u} + 3\mathbf{v} \).
   - (2) Find the angle \( \angle ABC \).
   - (3) Find the area of \( \triangle ABC \).

2. **(b)**
   - Find a vector equation for the line that passes through \( A \) and \( B \); also find the distance from \( C \) to the line.

3. **(c)**
   - Find a linear equation for the plane that passes through \( A, B, \) and \( C \); also find a point \( D \) on the plane such that \( \overrightarrow{OD} \) is perpendicular to the plane.

## Linear Equations

1. **(a)**
   - Let \( k \) be a constant. For unknown \( x, y, z \), solve the system:
     \[
     \begin{align*}
     x + y + z &= 1, \\
     2x + y + z &= 5, \\
     6x + y + z &= k.
     \end{align*}
     \]

2. **(b)**
   - Let \( k \) be a constant. For unknown \( x, y, z \), solve the system:
     \[
     \begin{align*}
     x + y + kz &= 1, \\
     x + ky + z &= 1, \\
     kx + y + z &= -2.
     \end{align*}
     \]

3. **(c)**
   - Show that \( \mathbf{u}, \mathbf{v}, \mathbf{w} \) is in span\(\{ \mathbf{u} + \mathbf{v}, 2\mathbf{u} + 3\mathbf{v}, 4\mathbf{v} +
Transcribed Image Text:## Vectors and Geometry Let \( A = (0, 1, 3), B = (0, 6, 6), C = (3, -5, 5) \), and \( O = (0, 0, 0) \). 1. **(a)** - Let \( \mathbf{u} = \overrightarrow{AB}, \mathbf{v} = \overrightarrow{BC} \). - (1) Simplify \( 2\mathbf{u} + 3\mathbf{v} \). - (2) Find the angle \( \angle ABC \). - (3) Find the area of \( \triangle ABC \). 2. **(b)** - Find a vector equation for the line that passes through \( A \) and \( B \); also find the distance from \( C \) to the line. 3. **(c)** - Find a linear equation for the plane that passes through \( A, B, \) and \( C \); also find a point \( D \) on the plane such that \( \overrightarrow{OD} \) is perpendicular to the plane. ## Linear Equations 1. **(a)** - Let \( k \) be a constant. For unknown \( x, y, z \), solve the system: \[ \begin{align*} x + y + z &= 1, \\ 2x + y + z &= 5, \\ 6x + y + z &= k. \end{align*} \] 2. **(b)** - Let \( k \) be a constant. For unknown \( x, y, z \), solve the system: \[ \begin{align*} x + y + kz &= 1, \\ x + ky + z &= 1, \\ kx + y + z &= -2. \end{align*} \] 3. **(c)** - Show that \( \mathbf{u}, \mathbf{v}, \mathbf{w} \) is in span\(\{ \mathbf{u} + \mathbf{v}, 2\mathbf{u} + 3\mathbf{v}, 4\mathbf{v} +
Expert Solution
Step 1: Guidelines

According to guidelines we can solve only first three subparts.

steps

Step by step

Solved in 7 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,