2. (i) Let A be an invertible matrix. Assume that A = A-1. What are the possible values for det(A)? (ii) Let B be a skew-symmetric matrix over R, i.e. AT = -B and of order 2n–1. Show that det(B) = 0. (iii) Show that if a square matrix C is hermitian, i.e. C* = C then det(C) is a real number.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2. (i) Let A be an invertible matrix. Assume that A = A-1, What
are the possible values for det(A)?
(ii) Let B be a skew-symmetric matrix over R, i.e. AT = -B and of order 2n-1.
Show that det(B) = 0.
(iii) Show that if a square matrix C is hermitian, i.e. C* = C then det(C) is a
%3D
real number.
Transcribed Image Text:2. (i) Let A be an invertible matrix. Assume that A = A-1, What are the possible values for det(A)? (ii) Let B be a skew-symmetric matrix over R, i.e. AT = -B and of order 2n-1. Show that det(B) = 0. (iii) Show that if a square matrix C is hermitian, i.e. C* = C then det(C) is a %3D real number.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,