[T(V)]g = (c) Find P- and A' (the matrix for T relative to B'). 1/3 -1/3 3/4 -1/2 13 20/3 A'= -33/2 -8 (d) Find [T(v)1g. tvo ways. [T(v)], = ATv]g. =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
100%

Please answer only the blank ones

The image presents a sequence of steps to find matrices related to a transformation T from R² to R² with respect to two different bases, B and B'.

**Problem Statement and Given Data:**

- Let \( B = \{(1, 3), (-2, -2)\} \) and \( B' = \{(-12, 0), (-4, 4)\} \) be bases for \( R^2 \).
- Let \( A = \begin{bmatrix} 2 & 0 \\ 4 & 3 \end{bmatrix} \) be the matrix for transformation \( T: R^2 \to R^2 \) relative to basis B.

**Tasks and Solutions:**

(a) **Find the Transition Matrix \( P \) from \( B' \) to B:**

- Transition Matrix \( P \) is given as:
  \[
  P = \begin{bmatrix} 6 & 4 \\ 9 & 4 \end{bmatrix}
  \]

(b) **Use the Matrices \( P \) and \( A \) to Find \([v]_B\) and \([Tv]_B\):**

- Given \([v]_B = \begin{bmatrix} -2 \\ 1 \end{bmatrix}^T\)
- Calculate \([v]_{B'}\):
  \[
  [v]_{B'} = \begin{bmatrix} -8 \\ -14 \end{bmatrix}
  \]
- Error in calculating \([Tv]_{B'}\):
  \[
  [Tv]_{B'} = \begin{bmatrix} \Box \\ \Box \end{bmatrix}
  \]
  (Boxes indicate missing values)

(c) **Find \( P^{-1} \) and \( A' \) (the Matrix for \( T \) Relative to \( B' \)):**

- Inverse of Transition Matrix \( P \):
  \[
  P^{-1} = \begin{bmatrix} -1/3 & 1/3 \\ 3/4 & 1/2 \end{bmatrix}
  \]
- Matrix \( A' \):
  \[
  A' = \begin{bmatrix} 13 & 20/3 \\ -33/2 & -8 \end{bmatrix}
Transcribed Image Text:The image presents a sequence of steps to find matrices related to a transformation T from R² to R² with respect to two different bases, B and B'. **Problem Statement and Given Data:** - Let \( B = \{(1, 3), (-2, -2)\} \) and \( B' = \{(-12, 0), (-4, 4)\} \) be bases for \( R^2 \). - Let \( A = \begin{bmatrix} 2 & 0 \\ 4 & 3 \end{bmatrix} \) be the matrix for transformation \( T: R^2 \to R^2 \) relative to basis B. **Tasks and Solutions:** (a) **Find the Transition Matrix \( P \) from \( B' \) to B:** - Transition Matrix \( P \) is given as: \[ P = \begin{bmatrix} 6 & 4 \\ 9 & 4 \end{bmatrix} \] (b) **Use the Matrices \( P \) and \( A \) to Find \([v]_B\) and \([Tv]_B\):** - Given \([v]_B = \begin{bmatrix} -2 \\ 1 \end{bmatrix}^T\) - Calculate \([v]_{B'}\): \[ [v]_{B'} = \begin{bmatrix} -8 \\ -14 \end{bmatrix} \] - Error in calculating \([Tv]_{B'}\): \[ [Tv]_{B'} = \begin{bmatrix} \Box \\ \Box \end{bmatrix} \] (Boxes indicate missing values) (c) **Find \( P^{-1} \) and \( A' \) (the Matrix for \( T \) Relative to \( B' \)):** - Inverse of Transition Matrix \( P \): \[ P^{-1} = \begin{bmatrix} -1/3 & 1/3 \\ 3/4 & 1/2 \end{bmatrix} \] - Matrix \( A' \): \[ A' = \begin{bmatrix} 13 & 20/3 \\ -33/2 & -8 \end{bmatrix}
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Research Design Formulation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,