2. For F(x, y, z) = (6xsin y+10x=' )i + (3x² cos y-4ye* −2y²z³)j + (-2y³e² +15x²2²)k, find a function f such that F =Vf and use fto evaluate [F-dr along the curve C:r(t)=(√1-2)i+(1²-1)+(²-31-4)k and 0≤1≤4.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem 2**

For \(\mathbf{F}(x, y, z) = (6x \sin y + 10xz^2)\mathbf{i} + (3x^2 \cos y - 4ye^{x^2} - 2y^2xe^{xz})\mathbf{j} + (-2y^2 e^{xz} + 15x^2z^2)\mathbf{k}\), find a function \(f\) such that \(\mathbf{F} = \nabla f\) and use \(f\) to evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r}\) along the curve

\[ C: \mathbf{r}(t) = (\sqrt{t - 2})\mathbf{i} + (t^2 - 1)\mathbf{j} + (t^2 - 3t - 4)\mathbf{k} \]

and \(0 \leq t \leq 4\).
Transcribed Image Text:**Problem 2** For \(\mathbf{F}(x, y, z) = (6x \sin y + 10xz^2)\mathbf{i} + (3x^2 \cos y - 4ye^{x^2} - 2y^2xe^{xz})\mathbf{j} + (-2y^2 e^{xz} + 15x^2z^2)\mathbf{k}\), find a function \(f\) such that \(\mathbf{F} = \nabla f\) and use \(f\) to evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r}\) along the curve \[ C: \mathbf{r}(t) = (\sqrt{t - 2})\mathbf{i} + (t^2 - 1)\mathbf{j} + (t^2 - 3t - 4)\mathbf{k} \] and \(0 \leq t \leq 4\).
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,