2. Find the inverse Laplace of the following functions using Convolution Integral. a) Leave your answer in integral form. F(s) (s²+4)² o) Evaluate the convolution integral. F(s) = 1 s² (s² + k²)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Plz do both parts and take a thumb up
2.
L(eat f(t)) = F(s-a);
L-¹ (F(s-a)) = eªt f(t) where f(t) = [~ ¹(F(s))
c(f(t-c)u (t)) = e "Lif(t)); ¹(e-F(s)) = f(t-c)u(t) where f(t) = £¹ (F(s))
L(8(t-c)) = e-s;
L(f(t)-g(t)) = F(s)G(s);
f(t).g(t) =
L(f(t)8(t-c)) = f(c)e-s
L¹(F(s) G(s)) = f(t) g(t)
F(s) =
Find the inverse Laplace of the following functions using Convolution Integral.
a) Leave your answer in integral form.
FORMULAS TO REMEMBER
(s²+4)²
F(s) =
D) Evaluate the convolution integral.
s² (s²+k²)
- [ f(t)g (t = v)dr = [*9(
-T)dt = g(t)f(t-1)dr
Transcribed Image Text:2. L(eat f(t)) = F(s-a); L-¹ (F(s-a)) = eªt f(t) where f(t) = [~ ¹(F(s)) c(f(t-c)u (t)) = e "Lif(t)); ¹(e-F(s)) = f(t-c)u(t) where f(t) = £¹ (F(s)) L(8(t-c)) = e-s; L(f(t)-g(t)) = F(s)G(s); f(t).g(t) = L(f(t)8(t-c)) = f(c)e-s L¹(F(s) G(s)) = f(t) g(t) F(s) = Find the inverse Laplace of the following functions using Convolution Integral. a) Leave your answer in integral form. FORMULAS TO REMEMBER (s²+4)² F(s) = D) Evaluate the convolution integral. s² (s²+k²) - [ f(t)g (t = v)dr = [*9( -T)dt = g(t)f(t-1)dr
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,