2. Determine the total volume of all gases (at STP) formed when 50.0 mL of TNT (C3H5(NO3)3, density = 1.60 g/mL, molar mass = 227.10 g/mol) reacts according to the following reaction. 4 C3H5(NO3)3(1)→ 6 N₂(g) + O2(g) + 12 CO₂(g) + 10 H₂O(g)
2. Determine the total volume of all gases (at STP) formed when 50.0 mL of TNT (C3H5(NO3)3, density = 1.60 g/mL, molar mass = 227.10 g/mol) reacts according to the following reaction. 4 C3H5(NO3)3(1)→ 6 N₂(g) + O2(g) + 12 CO₂(g) + 10 H₂O(g)
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
100%
![2. Determine the total volume of all gases (at STP) formed when 50.0 mL of TNT (C₃H₅(NO₃)₃, density = 1.60 g/mL, molar mass = 227.10 g/mol) reacts according to the following reaction.
\[ 4 \, \text{C}_3\text{H}_5(\text{NO}_3)_3 (\text{l}) \rightarrow 6 \, \text{N}_2 (\text{g}) + \text{O}_2 (\text{g}) + 12 \, \text{CO}_2 (\text{g}) + 10 \, \text{H}_2\text{O} (\text{g}) \]
**Explanation:**
- This problem involves calculating the total volume of gases produced at standard temperature and pressure (STP) from a specified volume of liquid TNT.
- TNT's chemical formula is C₃H₅(NO₃)₃, with a given density and molar mass.
- The balanced chemical equation describes the decomposition of TNT into nitrogen gas (N₂), oxygen gas (O₂), carbon dioxide gas (CO₂), and water vapor (H₂O).
- At STP, one mole of any ideal gas occupies 22.4 liters. This principle will be used to calculate the total gas volume after the reaction.
No graphs or diagrams are present in the given image.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9b27e901-e87b-4228-8406-e843591659e6%2F4a30e94c-9fe0-4881-bde7-74e088409baa%2Ftlin7cl_processed.jpeg&w=3840&q=75)
Transcribed Image Text:2. Determine the total volume of all gases (at STP) formed when 50.0 mL of TNT (C₃H₅(NO₃)₃, density = 1.60 g/mL, molar mass = 227.10 g/mol) reacts according to the following reaction.
\[ 4 \, \text{C}_3\text{H}_5(\text{NO}_3)_3 (\text{l}) \rightarrow 6 \, \text{N}_2 (\text{g}) + \text{O}_2 (\text{g}) + 12 \, \text{CO}_2 (\text{g}) + 10 \, \text{H}_2\text{O} (\text{g}) \]
**Explanation:**
- This problem involves calculating the total volume of gases produced at standard temperature and pressure (STP) from a specified volume of liquid TNT.
- TNT's chemical formula is C₃H₅(NO₃)₃, with a given density and molar mass.
- The balanced chemical equation describes the decomposition of TNT into nitrogen gas (N₂), oxygen gas (O₂), carbon dioxide gas (CO₂), and water vapor (H₂O).
- At STP, one mole of any ideal gas occupies 22.4 liters. This principle will be used to calculate the total gas volume after the reaction.
No graphs or diagrams are present in the given image.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 5 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY