2. Determine the Laplace transform of the given function a) f(t) = e³¹t4 b) f(t
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
2A
![**Problem Statement:**
Determine the Laplace transform of the given function.
**Functions:**
a) \( f(t) = e^{3t} t^4 \)
b) \( f(t) = 2e^{3t} - 3te^{2t} \)
c) \( f(t) = e^{5t} \sin(3t) \)
d) \( f(t) = e^{-4t} \cosh(2t) \)
e) \( f(t) = e^{5t} \cos^2(5t) \)
f) \( f(t) = e^t \cos t + e^t \sin^2(3t) \)
g) \( f(t) = (t - 3)^2 U_3(t) \)
h) \( f(t) = e^{5(t-2)} U_2(t) \)
i) \( f(t) = t^2 U_3(t) \)
j) \( f(t) = e^{5(t-4)} (t - 1)^2 U_4(t) \)
k) \( f(t) = t^3 \cos(3t) \)
l) \( f(t) = te^{3t} \sin(2t) \)
**Explanation:**
These functions are generally given in terms of \(t\) and include exponential functions, trigonometric functions, and step functions \(U(t)\). The Laplace transform is a powerful integral transform used to convert differential equations to algebraic equations, making them easier to solve.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4d410cd6-8fc6-4d13-8ff0-7a43ba3056bc%2F6812bbd2-dcbf-46fe-a6be-8b7ca0ac7c34%2F1vj027v_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Determine the Laplace transform of the given function.
**Functions:**
a) \( f(t) = e^{3t} t^4 \)
b) \( f(t) = 2e^{3t} - 3te^{2t} \)
c) \( f(t) = e^{5t} \sin(3t) \)
d) \( f(t) = e^{-4t} \cosh(2t) \)
e) \( f(t) = e^{5t} \cos^2(5t) \)
f) \( f(t) = e^t \cos t + e^t \sin^2(3t) \)
g) \( f(t) = (t - 3)^2 U_3(t) \)
h) \( f(t) = e^{5(t-2)} U_2(t) \)
i) \( f(t) = t^2 U_3(t) \)
j) \( f(t) = e^{5(t-4)} (t - 1)^2 U_4(t) \)
k) \( f(t) = t^3 \cos(3t) \)
l) \( f(t) = te^{3t} \sin(2t) \)
**Explanation:**
These functions are generally given in terms of \(t\) and include exponential functions, trigonometric functions, and step functions \(U(t)\). The Laplace transform is a powerful integral transform used to convert differential equations to algebraic equations, making them easier to solve.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)