2. Determine the Laplace transform of the given function a) f(t) = e³¹t4 b) f(t

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2A
**Problem Statement:**

Determine the Laplace transform of the given function.

**Functions:**

a) \( f(t) = e^{3t} t^4 \)

b) \( f(t) = 2e^{3t} - 3te^{2t} \)

c) \( f(t) = e^{5t} \sin(3t) \)

d) \( f(t) = e^{-4t} \cosh(2t) \)

e) \( f(t) = e^{5t} \cos^2(5t) \)

f) \( f(t) = e^t \cos t + e^t \sin^2(3t) \)

g) \( f(t) = (t - 3)^2 U_3(t) \)

h) \( f(t) = e^{5(t-2)} U_2(t) \)

i) \( f(t) = t^2 U_3(t) \)

j) \( f(t) = e^{5(t-4)} (t - 1)^2 U_4(t) \)

k) \( f(t) = t^3 \cos(3t) \)

l) \( f(t) = te^{3t} \sin(2t) \)

**Explanation:**

These functions are generally given in terms of \(t\) and include exponential functions, trigonometric functions, and step functions \(U(t)\). The Laplace transform is a powerful integral transform used to convert differential equations to algebraic equations, making them easier to solve.
Transcribed Image Text:**Problem Statement:** Determine the Laplace transform of the given function. **Functions:** a) \( f(t) = e^{3t} t^4 \) b) \( f(t) = 2e^{3t} - 3te^{2t} \) c) \( f(t) = e^{5t} \sin(3t) \) d) \( f(t) = e^{-4t} \cosh(2t) \) e) \( f(t) = e^{5t} \cos^2(5t) \) f) \( f(t) = e^t \cos t + e^t \sin^2(3t) \) g) \( f(t) = (t - 3)^2 U_3(t) \) h) \( f(t) = e^{5(t-2)} U_2(t) \) i) \( f(t) = t^2 U_3(t) \) j) \( f(t) = e^{5(t-4)} (t - 1)^2 U_4(t) \) k) \( f(t) = t^3 \cos(3t) \) l) \( f(t) = te^{3t} \sin(2t) \) **Explanation:** These functions are generally given in terms of \(t\) and include exponential functions, trigonometric functions, and step functions \(U(t)\). The Laplace transform is a powerful integral transform used to convert differential equations to algebraic equations, making them easier to solve.
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,