2. Consider a function f : R → R where S(x) = x³ – 3x for all æ e R. Identify all critical points and explain whether each of the critical points is a local maximum, a local minimum, or neither. Are there global maximum or minimum solutions? Explain.
Please solve the screenshot, thanks!
![**Exercise 2: Analyzing Critical Points of a Function**
Consider a function \( f : \mathbb{R} \to \mathbb{R} \) where
\[ f(x) = x^3 - 3x \quad \text{for all } x \in \mathbb{R}. \]
**Task**
Identify all critical points and explain whether each of the critical points is a local maximum, a local minimum, or neither. Are there global maximum or minimum solutions? Explain.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F56945fae-aeca-4f60-8c3d-a266c334f238%2Fef7e02b0-fcb7-42dd-a38b-14f848a1d017%2Fbadqsow_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Given the function .
To find the critical points and the local maximum and local minimum .
To find this we can use First derivative test.
First derivative test:
Let f be a real valued function continuous at a critical point c () then
1)If changes sign from positive to negative as x increases through c i.e. if at every point sufficiently close to and left c, and at every point sufficiently close to and to the right pf c, then c is a point of local maxima.
2)If changes sign from negative to positive as x increases through c i.e. if at every point sufficiently close to and left c, and at every point sufficiently close to and to the right pf c, then c is a point of local minima.
3)If doesn't exist change sing as x increases through c, then c is neither a point of local maxima nor a local minima. Infact, such a point is called point of inflection.
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)