2. Below is a table showing the amount of presents wrapped per hour. a) Circle one: EXPONENTIAL / LINEAR b) Explain how you know. c) Find the rate of change from 1 to 4 hours. d) Find the rate of change from 0 to 5 hours.

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
2. Below is a table showing the amount of presents wrapped per hour.
a) Circle one: EXPONENTIAL / LINEAR
b) Explain how you know.
Time (in hours)
Presents wrapped
1
12
c) Find the rate of change from 1 to 4 hours.
24
36
60
d) Find the rate of change from 0 to 5 hours.
3. Below is a table showing the gerbil population in a village. Let x represent the number of years and y be the
number of gerbils.
a) Circle one: EXPONENTIAL / LINEAR
b) Explain how you know.
11
15
2.
75
3.
375
c) Find the rate of change from 0 to 2 years.
1,875
d) Find the rate of change from 1 to 4 years.
4.
Transcribed Image Text:2. Below is a table showing the amount of presents wrapped per hour. a) Circle one: EXPONENTIAL / LINEAR b) Explain how you know. Time (in hours) Presents wrapped 1 12 c) Find the rate of change from 1 to 4 hours. 24 36 60 d) Find the rate of change from 0 to 5 hours. 3. Below is a table showing the gerbil population in a village. Let x represent the number of years and y be the number of gerbils. a) Circle one: EXPONENTIAL / LINEAR b) Explain how you know. 11 15 2. 75 3. 375 c) Find the rate of change from 0 to 2 years. 1,875 d) Find the rate of change from 1 to 4 years. 4.
Expert Solution
Step 1

a) and b) partA function  y = f ( x )  is said to be the linear function of  x  i.e. y = f ( x ) = a x + b ; a  0 . In case of  such a linear function the slope of the line represented by the function remains constant. An exponential function  y = f ( x ) = abx ; a , b  0   : represents the general term of a geometric progression which grows by a factor referred to as a common ratio of the series.A function  y = f ( x )  is said to be the linear function of  x  i.e.  y = f ( x ) = a x + b ; a  0 . For such a linear function the slope of the line represented by the function remains constant. An exponential function  y = f ( x ) = a e b x ; a , b  0     represents the general term of a geometric progression which grows by a factor referred to as a common ratio of the series.

 

f (1) f (0) = f (2)f (1)  = f (3)f (2)  = f (4)  f (3) = common ratio

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Linear Equations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education