2. A 15-cm X 20-cm hot surface at 85°C is to be cooled by attaching 4- cm-long aluminum ( k = 237 W/m-°C) fins of 2-mm X 2-mm square cross section. The temperature of surrounding medium is 25°C and the heat transfer coefficient on the surfaces can be taken to be 20 W/m2-°C. If it is desired to triple the rate of heat transfer from the bare hot surface, determine the number of fins that needs to be attached.
2. A 15-cm X 20-cm hot surface at 85°C is to be cooled by attaching 4- cm-long aluminum ( k = 237 W/m-°C) fins of 2-mm X 2-mm square cross section. The temperature of surrounding medium is 25°C and the heat transfer coefficient on the surfaces can be taken to be 20 W/m2-°C. If it is desired to triple the rate of heat transfer from the bare hot surface, determine the number of fins that needs to be attached.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
2. A 15-cm X 20-cm hot surface at 85°C is to be cooled by attaching 4 cm-long aluminum (k = 237 W/m-°C) fins of 2-mm X 2-mm square cross section. The temperature of surrounding medium is 25°C and the heat transfer coefficient on the surfaces can be taken to be 20 W/m2-°C. If it is desired to triple the rate of heat transfer from the bare hot surface, determine the number of fins that needs to be attached.

Transcribed Image Text:2. A 15-cm X 20-cm hot surface at 85°C is to be cooled by attaching 4-
cm-long aluminum (k = 237 W/m-°C) fins of 2-mm X 2-mm square cross
section. The temperature of surrounding medium is 25°C and the heat
transfer coefficient on the surfaces can be taken to be 20 W/m2-°C. If it is
desired to triple the rate of heat transfer from the bare hot surface,
determine the number of fins that needs to be attached.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY