2 Let mE R[x] be a polynomial with deg m > 1. Define a relation Sm on R[x] by the rule that (f,g) ES if and only if m is a factor of g - f. (a) Prove that Sm is an equivalence relation on R[x]. (b) The division rule for polynomials implies that every equivalence class of Sm con- tains one polynomial with a special property. What is this property? (c) Write down a polynomial mE R[x] such that the set {fe R[x]: f(2)= 3} is an equivalence class of Sm. Give a brief justification (one or two sentences).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2 Let me R[x] be a polynomial with deg m≥ 1. Define a relation Sm on R[x] by the rule
that (f,g) ES if and only if m is a factor of g - f.
(a) Prove that Sm is an equivalence relation on R[x].
(b) The division rule for polynomials implies that every equivalence class of Sm con-
tains one polynomial with a special property. What is this property?
(c) Write down a polynomial m € R[x] such that the set {fe R[x]: f(2)= 3} is an
equivalence class of Sm. Give a brief justification (one or two sentences).
Transcribed Image Text:2 Let me R[x] be a polynomial with deg m≥ 1. Define a relation Sm on R[x] by the rule that (f,g) ES if and only if m is a factor of g - f. (a) Prove that Sm is an equivalence relation on R[x]. (b) The division rule for polynomials implies that every equivalence class of Sm con- tains one polynomial with a special property. What is this property? (c) Write down a polynomial m € R[x] such that the set {fe R[x]: f(2)= 3} is an equivalence class of Sm. Give a brief justification (one or two sentences).
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,