2-kg of ice at -6.0°C is dropped into 5.0 L (5.566-kg) of car coolant. The initial temperature of the coolant is 25.0°C. The ice and coolant are insulated, so energy transfers to the outside is negligible. After hours, all ice melts and the final temperature of the mixture of water-coolant is 1.8°C. The specific heat of ice is 2090 J/kg °C; the specific heat of water is 4186 J/kg °C; the latent heat of fusion for water is 334000 J/kg. A. What is the energy needed for heating the ice to 0 °C? B. Determine the energy needed to melt the ice into water. C. Determine the total energy needed to heat the -6.0°C ice to 1.8°C water. (Please note: the total energy also includes the part heating water from 0.0 °C to 1.8 °C.) D. Determine the specific heat capacity of the coolant.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
1.2-kg of ice at -6.0°C is dropped into 5.0 L (5.566-kg) of car coolant. The initial temperature of the coolant is 25.0°C. The ice and coolant are insulated, so energy transfers to the outside is negligible. After hours, all ice melts and the final temperature of the mixture of water-coolant is 1.8°C. The specific heat of ice is 2090 J/kg °C; the specific heat of water is 4186 J/kg °C; the latent heat of fusion for water is 334000 J/kg. A. What is the energy needed for heating the ice to 0 °C? B. Determine the energy needed to melt the ice into water. C. Determine the total energy needed to heat the -6.0°C ice to 1.8°C water. (Please note: the total energy also includes the part heating water from 0.0 °C to 1.8 °C.) D. Determine the specific heat capacity of the coolant.
Expert Solution
Step 1

A.)

To heat 2 kg of ice from -6.0°C to 0°C, we need to use the formula:

Q = m * c * ΔT

where Q is the amount of energy needed, m is the mass of the ice, c is the specific heat capacity of ice, and ΔT is the change in temperature. Substituting the values, we get:

Q = 2 kg * 2090 J/kg °C * (0°C - (-6.0°C))

Q = 26,520 J

Therefore, the energy needed for heating the ice to 0°C is 26,520 J.

 

 

 
 
 
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON