(2) If a, b = Z, we set N(a+b√-5) = (a + b√−5)(a − b√-5) = a² + 5b². Let R = Z[√5] and R* = R-0. Consider the nomm map N : R* → Z*. (d) Show that 2,3,1+√-5, 1-√-5 are irreducible elemetns in R. (2) Observe 6 = 2.3 = (1+√√-5). (1-√-5). Show R is not a unique factorization domain.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Let R=1
2 = Z[√5] and R* = R-0. Consider the nomm map N : R* → Z*.
If a, b = Z, we set N(a+b√-5) = (a + b√−5)(a − b√-5) = a² + 5b².
(d) Show that 2, 3, 1+√√-5, 1-√√–5 are irreducible elemetns in R.
(2) Observe 6 = 2 · 3 = (1 + √−5) . (1-√-5). Show R is not a unique factorization
domain.
Transcribed Image Text:Let R=1 2 = Z[√5] and R* = R-0. Consider the nomm map N : R* → Z*. If a, b = Z, we set N(a+b√-5) = (a + b√−5)(a − b√-5) = a² + 5b². (d) Show that 2, 3, 1+√√-5, 1-√√–5 are irreducible elemetns in R. (2) Observe 6 = 2 · 3 = (1 + √−5) . (1-√-5). Show R is not a unique factorization domain.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,