2- Find the third derivative for əx3 for f(x,y) = sin) )+2 sin) sin)+3cos°) 8y3sinz s()+2sin() sin)+3cos² -2sin2cos( A: -2sin2cos B:- ) 8y³sinz -2sin2cos cos()+2 sin) sin()+3cos C:- 5. 8y2sinz) -2sin".cos()+2 sin() sin(-)+3cos° +2 sin) sin)+3cos² D:- 5 8y sinz) E: none of above

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2- Find the third derivative for
ax3
for f(x, y) = sin)
-2sin?cos()+2 sin() sin)+3cos?
*
A:
8y3sinz)
- 2sin2cos(2
B:-
+2 sin(?) sin()+3cos*O
8y3sinz
-2sin2cos
C:-
()+2 sin) sin()+3cos
- 2sin",cos(;) +2 sin(2) sin;)+3cos*)
8y²sinz)
+2 sin)si
)+3cos³)
D:-
8y sinz)
E: none of above
Transcribed Image Text:2- Find the third derivative for ax3 for f(x, y) = sin) -2sin?cos()+2 sin() sin)+3cos? * A: 8y3sinz) - 2sin2cos(2 B:- +2 sin(?) sin()+3cos*O 8y3sinz -2sin2cos C:- ()+2 sin) sin()+3cos - 2sin",cos(;) +2 sin(2) sin;)+3cos*) 8y²sinz) +2 sin)si )+3cos³) D:- 8y sinz) E: none of above
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Half-angle, Double-angle, and Product-Sum Formulae
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,