(1 point) Approximate cos(4.6) using a quadratic approximat First note that cos(4.6) cos(3/2). Let f(x) = cos(x). Then, f'(x) = -sinx and f"(x) = -cosx Let a = 3x/2. Then f' (3/2) = -sin(3pi/2) and f" (3л/2) = -cos(3pi/2) Q(x), the quadratic approximation to cos(x) at a = 3/2 is Q(x) = cos(3pi/2) Use Q(x) to approximate cos(4.6). cos(4.6) cos(3pi/2)
(1 point) Approximate cos(4.6) using a quadratic approximat First note that cos(4.6) cos(3/2). Let f(x) = cos(x). Then, f'(x) = -sinx and f"(x) = -cosx Let a = 3x/2. Then f' (3/2) = -sin(3pi/2) and f" (3л/2) = -cos(3pi/2) Q(x), the quadratic approximation to cos(x) at a = 3/2 is Q(x) = cos(3pi/2) Use Q(x) to approximate cos(4.6). cos(4.6) cos(3pi/2)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
Step 1
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,