2) Find the homogeneous linear ODE for which the given functions are Basis. -2x -2x , N, = Xe ", y3 = e²x cos 3x, y₁ = e²x sin 3x a) y₁ = e

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Q 2 please
1) Find the general solution for the following ODE using Undetermined Coefficients
Method. State which rule you are using. If the initial condition is given find the
particular solution.
a) (D² − 4D+31)y=e* - 4.5x
b)
y" +4y=-12sin 2x; y(0) = 2, y'(0) = 5
c) (D² -4D³ +4D²)y=48x; y(0)=1, y'(0)=2, y"(0)=0, y" (0)=0
d) (D³ +4D² +3D)y=3
2)
Find the homogeneous
-2.x
a) y₁=e , Y₂ 2 = xe
-2.x
-2.x
9
linear ODE for which the given functions are Basis.
Y3 = e²x cos 3x, y₁ = e²x sin 3x
-2x
b) y₁=e сOS лx, y₂ = e
c) y₁ = x, y₂ = x²,
d)
Y3 =
-2.x
sin лx, y3 = xe COS IC YA = xe sin zx
-2x
= x² In/x|
y₁= x², y₂ = xcos 2ln | x,
y3 = xsin 2 ln | x |
e)
y₁=e³x cos x, y₂ = e³x sinx, y₂ = cos x, y4 = sin x
f) y₁=1, y₂ = xsin 2 lnx, y3 = xcos 2 ln|x|
Transcribed Image Text:1) Find the general solution for the following ODE using Undetermined Coefficients Method. State which rule you are using. If the initial condition is given find the particular solution. a) (D² − 4D+31)y=e* - 4.5x b) y" +4y=-12sin 2x; y(0) = 2, y'(0) = 5 c) (D² -4D³ +4D²)y=48x; y(0)=1, y'(0)=2, y"(0)=0, y" (0)=0 d) (D³ +4D² +3D)y=3 2) Find the homogeneous -2.x a) y₁=e , Y₂ 2 = xe -2.x -2.x 9 linear ODE for which the given functions are Basis. Y3 = e²x cos 3x, y₁ = e²x sin 3x -2x b) y₁=e сOS лx, y₂ = e c) y₁ = x, y₂ = x², d) Y3 = -2.x sin лx, y3 = xe COS IC YA = xe sin zx -2x = x² In/x| y₁= x², y₂ = xcos 2ln | x, y3 = xsin 2 ln | x | e) y₁=e³x cos x, y₂ = e³x sinx, y₂ = cos x, y4 = sin x f) y₁=1, y₂ = xsin 2 lnx, y3 = xcos 2 ln|x|
Expert Solution
Step 1....About_Question

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,