2 Estimate the minimum number of subintervals to approximate the value of| (4x² + 4) dx with an error of magnitude less than 3x 10-* using -2 a. the error estimate formula for the Trapezoidal Rule. b. the error estimate formula for Simpson's Rule. N SY

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Numerical Integration Techniques - Error Estimation

#### Problem Statement

Estimate the minimum number of subintervals to approximate the value of
\[ \int_{-2}^{2} (4x^2 + 4) \, dx \]
with an error of magnitude less than \(3 \times 10^{-4}\) using:
a. the error estimate formula for the Trapezoidal Rule.
b. the error estimate formula for Simpson’s Rule.

#### Explanation:

### Part a: Error Estimate Formula for the Trapezoidal Rule

The error estimate for the Trapezoidal Rule is given by:
\[ E_T \leq \frac{(b-a)^3}{12n^2} \max_{a \leq x \leq b} |f''(x)| \]

1. Identify \( f(x) \):
   For \( f(x) = 4x^2 + 4 \)

2. Compute the second derivative \( f''(x) \):
   \[ f''(x) = 8 \]

3. Calculate the bounds:
   \[ a = -2 \]
   \[ b = 2 \]

4. Substitute into the error formula:
   \[ E_T \leq \frac{(2 - (-2))^3}{12n^2} (8) \]
   \[ E_T \leq \frac{64}{12n^2} \times 8 \]
   \[ E_T \leq \frac{512}{12n^2} \]
   \[ E_T \leq \frac{128}{3n^2} \]

5. Set up the inequality:
   \[ \frac{128}{3n^2} \leq 3 \times 10^{-4} \]

6. Solve for \( n \):
   \[ n \geq \sqrt{\frac{128}{3 \times 3 \times 10^{-4}}} \]
   \[ n \geq \sqrt{\frac{128}{9 \times 10^{-4}}} \]
   \[ n \geq \sqrt{142222.22} \]
   \[ n \geq 377 \]

Therefore, the minimum number of subintervals \( n \) must be greater than or equal to 377 for the Trapezoidal Rule.
Transcribed Image Text:### Numerical Integration Techniques - Error Estimation #### Problem Statement Estimate the minimum number of subintervals to approximate the value of \[ \int_{-2}^{2} (4x^2 + 4) \, dx \] with an error of magnitude less than \(3 \times 10^{-4}\) using: a. the error estimate formula for the Trapezoidal Rule. b. the error estimate formula for Simpson’s Rule. #### Explanation: ### Part a: Error Estimate Formula for the Trapezoidal Rule The error estimate for the Trapezoidal Rule is given by: \[ E_T \leq \frac{(b-a)^3}{12n^2} \max_{a \leq x \leq b} |f''(x)| \] 1. Identify \( f(x) \): For \( f(x) = 4x^2 + 4 \) 2. Compute the second derivative \( f''(x) \): \[ f''(x) = 8 \] 3. Calculate the bounds: \[ a = -2 \] \[ b = 2 \] 4. Substitute into the error formula: \[ E_T \leq \frac{(2 - (-2))^3}{12n^2} (8) \] \[ E_T \leq \frac{64}{12n^2} \times 8 \] \[ E_T \leq \frac{512}{12n^2} \] \[ E_T \leq \frac{128}{3n^2} \] 5. Set up the inequality: \[ \frac{128}{3n^2} \leq 3 \times 10^{-4} \] 6. Solve for \( n \): \[ n \geq \sqrt{\frac{128}{3 \times 3 \times 10^{-4}}} \] \[ n \geq \sqrt{\frac{128}{9 \times 10^{-4}}} \] \[ n \geq \sqrt{142222.22} \] \[ n \geq 377 \] Therefore, the minimum number of subintervals \( n \) must be greater than or equal to 377 for the Trapezoidal Rule.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Numerical Integration
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,