2 9 3 4 5 6 8 7 Which of the following is a second-order linear nonhomogenous ODE? B) sin(x)y"+y' + 3 = 0 C) sin(x) (y)² + C) sin(x) (y)² + y = 0 D) sin(x)y"y+ C) y = ³x² + D) y = ²x². A) sin(x)y" + y = 0 2 3 4 Find the general solution of y'++y = 4x ? B) y=x² + x x Find the values for the constants a, b in which the ODE (axy-by²) dx-(x² + 4xy) dy=0 is exact? A) a=3,b=-2 B) a=-3,b=-2 C) a=3,b=4 D) a=0,b=-2 By using a suitable substitution, the Bernoulli ODE y'+ xy = y, becomes a linear ODE of the form: A) u'-4xu = -4 B) u'-3x = -3u C) u'+ 3xu = 3 D) u'- 3xu = -3 Find the exact solution for x'y'-y = 0, y(1)=1 A) y = x² + C A) y=e* +e B) y=e¹² C)y=e³² +e_D) y=e¹4 By using a suitable substitution, the non-separable ODE xy' = x³ + y, is reduces to a separable ODE of the form: A)u' = = = = 1 B) u'=x C) xu'+2u=0 D) u'= -x x Find the general solution of y"-3y'=0 A) y =qx+c₂e³ C) y = ₁ +₂e³x D) y=c₁ +c₂e³x Find the value(s) fork in which the general solution of 3y"+y+ky=0 is of the form ce¹ + ₂x², {c₁, c₂, are real constants} -2x B) y=ce²+c₂e² A) k = 12 B) k=0 C) k = 1 D) k = 1/2 Find an ODE whose basis of the general solution the functions y, = sin 3x, y₂ = cos 3x A) y"-9y=0 B) y"+9y=0 C) y"-3y=0 D) y"+3y=0 10 The integrating factor of the non-exact D.E. (ex+y+yey) dx + (xey-1) dy = 0 (a) e-y (b)-y (c) y³ 11 the general solution for the second order ODE y" + 11y' + 24y = 0 a) y = C₁ e8x +C₂ e³x -8x (b) y = C₁ ex+C₂ e ³x 12 the integrating factor for the first order ODE y' = 3 + 2y is (a) e² (h)e² (c) -2x (d) 2x (d) y-³ (c) y = C₁ ex +C₂ e³x (d) y = C₁ e
2 9 3 4 5 6 8 7 Which of the following is a second-order linear nonhomogenous ODE? B) sin(x)y"+y' + 3 = 0 C) sin(x) (y)² + C) sin(x) (y)² + y = 0 D) sin(x)y"y+ C) y = ³x² + D) y = ²x². A) sin(x)y" + y = 0 2 3 4 Find the general solution of y'++y = 4x ? B) y=x² + x x Find the values for the constants a, b in which the ODE (axy-by²) dx-(x² + 4xy) dy=0 is exact? A) a=3,b=-2 B) a=-3,b=-2 C) a=3,b=4 D) a=0,b=-2 By using a suitable substitution, the Bernoulli ODE y'+ xy = y, becomes a linear ODE of the form: A) u'-4xu = -4 B) u'-3x = -3u C) u'+ 3xu = 3 D) u'- 3xu = -3 Find the exact solution for x'y'-y = 0, y(1)=1 A) y = x² + C A) y=e* +e B) y=e¹² C)y=e³² +e_D) y=e¹4 By using a suitable substitution, the non-separable ODE xy' = x³ + y, is reduces to a separable ODE of the form: A)u' = = = = 1 B) u'=x C) xu'+2u=0 D) u'= -x x Find the general solution of y"-3y'=0 A) y =qx+c₂e³ C) y = ₁ +₂e³x D) y=c₁ +c₂e³x Find the value(s) fork in which the general solution of 3y"+y+ky=0 is of the form ce¹ + ₂x², {c₁, c₂, are real constants} -2x B) y=ce²+c₂e² A) k = 12 B) k=0 C) k = 1 D) k = 1/2 Find an ODE whose basis of the general solution the functions y, = sin 3x, y₂ = cos 3x A) y"-9y=0 B) y"+9y=0 C) y"-3y=0 D) y"+3y=0 10 The integrating factor of the non-exact D.E. (ex+y+yey) dx + (xey-1) dy = 0 (a) e-y (b)-y (c) y³ 11 the general solution for the second order ODE y" + 11y' + 24y = 0 a) y = C₁ e8x +C₂ e³x -8x (b) y = C₁ ex+C₂ e ³x 12 the integrating factor for the first order ODE y' = 3 + 2y is (a) e² (h)e² (c) -2x (d) 2x (d) y-³ (c) y = C₁ ex +C₂ e³x (d) y = C₁ e
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Q 9 please
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,