1)find c 2)Try to find the cumulative probability function of X 3)find the mean, median,mode and variation of X 4)Try to find P(|X-u|<=1.8o), and compare it

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question

1)find c

2)Try to find the cumulative probability function of X

3)find the mean, median,mode and variation of X

4)Try to find P(|X-u|<=1.8o), and compare it with the result obtained by the Chebi's theorem. .

AaBbCcD AaBbCcD AABI AaBb
內文
無間距
標題1
標題
段落
啟用内容
非。四4バソ
16
个付合茂至公理,。
O是。因0Sf(x) <1,且E/()=1.
6.2 若X之機率分配函數為:。
cx x=1,3,5,7
f(x) =
elsewhere
O試求c。O試求X之累加機率函數。。
O試求X之平均數、中位數、眾數、變異數。
の試求P(X-pK1.80),並與生比氏定理所得的結果做比較。
1
OEf(x)=c+3c +5c+7c = 16c =1→c==
16
10
3
50
7
Ax)•
F(X)- 1/16.
1/16e
3/16.
5/16
9/16
7/16
4/16
1e
OLx= 5.25,中位數= 5,眾數-7.。
I
1
E(x³)=
3
--1+
16
25+
49 = 31=03=31 – 5.25 = 3.4375
16
16
16
P(X-Hx $1.80x)=P( X – 5.25|<3.34) = P(5.25– 3.34< X <5.25+3.34)
= P(X = 3) + P(X = 5) + P(X =7)=0.9375,
%3D
Transcribed Image Text:AaBbCcD AaBbCcD AABI AaBb 內文 無間距 標題1 標題 段落 啟用内容 非。四4バソ 16 个付合茂至公理,。 O是。因0Sf(x) <1,且E/()=1. 6.2 若X之機率分配函數為:。 cx x=1,3,5,7 f(x) = elsewhere O試求c。O試求X之累加機率函數。。 O試求X之平均數、中位數、眾數、變異數。 の試求P(X-pK1.80),並與生比氏定理所得的結果做比較。 1 OEf(x)=c+3c +5c+7c = 16c =1→c== 16 10 3 50 7 Ax)• F(X)- 1/16. 1/16e 3/16. 5/16 9/16 7/16 4/16 1e OLx= 5.25,中位數= 5,眾數-7.。 I 1 E(x³)= 3 --1+ 16 25+ 49 = 31=03=31 – 5.25 = 3.4375 16 16 16 P(X-Hx $1.80x)=P( X – 5.25|<3.34) = P(5.25– 3.34< X <5.25+3.34) = P(X = 3) + P(X = 5) + P(X =7)=0.9375, %3D
First pic:According to Chai's theorem, P(1X-uaS
1.8 ox)2 >=0.691 can be obtained, which is an
estimate of the lower bound of the actual
probability, which is very different from the
actual probability distribution.
F(x): {cx x=1,3,57 |0 = elsewhere}
This picture is the answer. Please explain how
did they got the answer
OEf(x)=c+3c +5c+7c=16c =1=c==
16
Xo
1e
3
3/16
4/16
5e
7
Ax)•
F(X)-
1/16e
5/16.
7/16
1/16.
9/16
1e
®Hx = 5.25 , $L= 5 , 7 .
I.
1
3
-1+-
16
5
7.
E(x)=
9+
49 = 31=ox= 31–525² = 34375
16
25+
16
16
P(X-Hx $1.80x)= P( X – 5.25|S 3.34) = P(5.25–3.34< X <5.25+3.34) «
= P(X= 3) +P(X = 5) + P(X =7)=0.9375.
Transcribed Image Text:First pic:According to Chai's theorem, P(1X-uaS 1.8 ox)2 >=0.691 can be obtained, which is an estimate of the lower bound of the actual probability, which is very different from the actual probability distribution. F(x): {cx x=1,3,57 |0 = elsewhere} This picture is the answer. Please explain how did they got the answer OEf(x)=c+3c +5c+7c=16c =1=c== 16 Xo 1e 3 3/16 4/16 5e 7 Ax)• F(X)- 1/16e 5/16. 7/16 1/16. 9/16 1e ®Hx = 5.25 , $L= 5 , 7 . I. 1 3 -1+- 16 5 7. E(x)= 9+ 49 = 31=ox= 31–525² = 34375 16 25+ 16 16 P(X-Hx $1.80x)= P( X – 5.25|S 3.34) = P(5.25–3.34< X <5.25+3.34) « = P(X= 3) +P(X = 5) + P(X =7)=0.9375.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Multivariate Distributions and Functions of Random Variables
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON