1)find c 2)Try to find the cumulative probability function of X 3)find the mean, median,mode and variation of X 4)Try to find P(|X-u|<=1.8o), and compare it

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question

1)find c

2)Try to find the cumulative probability function of X

3)find the mean, median,mode and variation of X

4)Try to find P(|X-u|<=1.8o), and compare it with the result obtained by the Chebi's theorem. .

AaBbCcD AaBbCcD AABI AaBb
內文
無間距
標題1
標題
段落
啟用内容
非。四4バソ
16
个付合茂至公理,。
O是。因0Sf(x) <1,且E/()=1.
6.2 若X之機率分配函數為:。
cx x=1,3,5,7
f(x) =
elsewhere
O試求c。O試求X之累加機率函數。。
O試求X之平均數、中位數、眾數、變異數。
の試求P(X-pK1.80),並與生比氏定理所得的結果做比較。
1
OEf(x)=c+3c +5c+7c = 16c =1→c==
16
10
3
50
7
Ax)•
F(X)- 1/16.
1/16e
3/16.
5/16
9/16
7/16
4/16
1e
OLx= 5.25,中位數= 5,眾數-7.。
I
1
E(x³)=
3
--1+
16
25+
49 = 31=03=31 – 5.25 = 3.4375
16
16
16
P(X-Hx $1.80x)=P( X – 5.25|<3.34) = P(5.25– 3.34< X <5.25+3.34)
= P(X = 3) + P(X = 5) + P(X =7)=0.9375,
%3D
Transcribed Image Text:AaBbCcD AaBbCcD AABI AaBb 內文 無間距 標題1 標題 段落 啟用内容 非。四4バソ 16 个付合茂至公理,。 O是。因0Sf(x) <1,且E/()=1. 6.2 若X之機率分配函數為:。 cx x=1,3,5,7 f(x) = elsewhere O試求c。O試求X之累加機率函數。。 O試求X之平均數、中位數、眾數、變異數。 の試求P(X-pK1.80),並與生比氏定理所得的結果做比較。 1 OEf(x)=c+3c +5c+7c = 16c =1→c== 16 10 3 50 7 Ax)• F(X)- 1/16. 1/16e 3/16. 5/16 9/16 7/16 4/16 1e OLx= 5.25,中位數= 5,眾數-7.。 I 1 E(x³)= 3 --1+ 16 25+ 49 = 31=03=31 – 5.25 = 3.4375 16 16 16 P(X-Hx $1.80x)=P( X – 5.25|<3.34) = P(5.25– 3.34< X <5.25+3.34) = P(X = 3) + P(X = 5) + P(X =7)=0.9375, %3D
First pic:According to Chai's theorem, P(1X-uaS
1.8 ox)2 >=0.691 can be obtained, which is an
estimate of the lower bound of the actual
probability, which is very different from the
actual probability distribution.
F(x): {cx x=1,3,57 |0 = elsewhere}
This picture is the answer. Please explain how
did they got the answer
OEf(x)=c+3c +5c+7c=16c =1=c==
16
Xo
1e
3
3/16
4/16
5e
7
Ax)•
F(X)-
1/16e
5/16.
7/16
1/16.
9/16
1e
®Hx = 5.25 , $L= 5 , 7 .
I.
1
3
-1+-
16
5
7.
E(x)=
9+
49 = 31=ox= 31–525² = 34375
16
25+
16
16
P(X-Hx $1.80x)= P( X – 5.25|S 3.34) = P(5.25–3.34< X <5.25+3.34) «
= P(X= 3) +P(X = 5) + P(X =7)=0.9375.
Transcribed Image Text:First pic:According to Chai's theorem, P(1X-uaS 1.8 ox)2 >=0.691 can be obtained, which is an estimate of the lower bound of the actual probability, which is very different from the actual probability distribution. F(x): {cx x=1,3,57 |0 = elsewhere} This picture is the answer. Please explain how did they got the answer OEf(x)=c+3c +5c+7c=16c =1=c== 16 Xo 1e 3 3/16 4/16 5e 7 Ax)• F(X)- 1/16e 5/16. 7/16 1/16. 9/16 1e ®Hx = 5.25 , $L= 5 , 7 . I. 1 3 -1+- 16 5 7. E(x)= 9+ 49 = 31=ox= 31–525² = 34375 16 25+ 16 16 P(X-Hx $1.80x)= P( X – 5.25|S 3.34) = P(5.25–3.34< X <5.25+3.34) « = P(X= 3) +P(X = 5) + P(X =7)=0.9375.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Multivariate Distributions and Functions of Random Variables
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON