16(e +g +s) – d(c+ j +|f (d +e + s) – g (b (d +e+g) (b +c+f),

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Show me the steps of determie red

where po, P1, P2, P3
and
P4 are given by (9).
The characteristic equation associated with Eq.(10) is
15 + pAXt + p3d³ + p2X² + p1d + po = 0,
(11)
Theorem 3 Assume that a < 1 and
16 (e +g +s) – d (c+ f +r)|+|c (d +g +s) – e (b+ f +r)|
+|f (d +e +s) – g (b +c+r)|+ |r (d +e +g) – s (b + c+ f)|
< (d+e+g) (b+ c+ f),
S
(12)
then the positive equilibrium point (7) of Eq. (1) is locally asymptotically sta-
ble.
Proof: It follows by Theorem 1 that Eq.(10) is asymptotically stable if all
roots of Eq.(11) lie in the open disk is |A| < 1 that is if |e4|+ \e3| + |P2l +
lei| + |po| < 1,
d (c + f +r)]
(1— а) [b (е +9 +)
(d +e +g+ s) (b + c +f +r)
|a|+
|(1 – a) [c (d +g +s)
e (b + f +r)]
+
(d +e +g+ s) (b +c + f +r)
|(1 – a) [f (d+e+ s)
(d + e+g+ s) (6 +c+ f +r)
(1 – a) [r (d + e+ g)
(d +e +g+ s) (b + c + f + r)
g (b +c+r)]
s (b +c+ f)]
< 1,
and so
(1 – a) [b (e +g +s) – d (c + f +r)]
(d +e +g+s) (b + c + f +r)
(1– a) [c (d +g +s) – e(b + f +r)]|
+
(d +e +g+s) (b +c+ f +r)
(1 – a) [f (d + e +s)
(d +e +g+ s) (b +c + ƒ + r)
(1 – a) [r (d + e +g) – s (b + c+ f)]|
(d +e +g+s) (b + c + f +r)
а < 1,
g (b +c+r)]
< (1- а),
or
|b(e +g + s) – d (c+ f +r)|+ |c (d +g+s)
+|f (d +e +s) – g (b +c+r)+ |r (d +e +g) – s (b +c+ f)
K (d +e +g) (b+c+f).
- e (b+ f +r)|
Thus, the proof is now completed.
Transcribed Image Text:where po, P1, P2, P3 and P4 are given by (9). The characteristic equation associated with Eq.(10) is 15 + pAXt + p3d³ + p2X² + p1d + po = 0, (11) Theorem 3 Assume that a < 1 and 16 (e +g +s) – d (c+ f +r)|+|c (d +g +s) – e (b+ f +r)| +|f (d +e +s) – g (b +c+r)|+ |r (d +e +g) – s (b + c+ f)| < (d+e+g) (b+ c+ f), S (12) then the positive equilibrium point (7) of Eq. (1) is locally asymptotically sta- ble. Proof: It follows by Theorem 1 that Eq.(10) is asymptotically stable if all roots of Eq.(11) lie in the open disk is |A| < 1 that is if |e4|+ \e3| + |P2l + lei| + |po| < 1, d (c + f +r)] (1— а) [b (е +9 +) (d +e +g+ s) (b + c +f +r) |a|+ |(1 – a) [c (d +g +s) e (b + f +r)] + (d +e +g+ s) (b +c + f +r) |(1 – a) [f (d+e+ s) (d + e+g+ s) (6 +c+ f +r) (1 – a) [r (d + e+ g) (d +e +g+ s) (b + c + f + r) g (b +c+r)] s (b +c+ f)] < 1, and so (1 – a) [b (e +g +s) – d (c + f +r)] (d +e +g+s) (b + c + f +r) (1– a) [c (d +g +s) – e(b + f +r)]| + (d +e +g+s) (b +c+ f +r) (1 – a) [f (d + e +s) (d +e +g+ s) (b +c + ƒ + r) (1 – a) [r (d + e +g) – s (b + c+ f)]| (d +e +g+s) (b + c + f +r) а < 1, g (b +c+r)] < (1- а), or |b(e +g + s) – d (c+ f +r)|+ |c (d +g+s) +|f (d +e +s) – g (b +c+r)+ |r (d +e +g) – s (b +c+ f) K (d +e +g) (b+c+f). - e (b+ f +r)| Thus, the proof is now completed.
In this section, we study the local stability of the solutions of Eq.(1). The
equilibrium point ã of Eq.(1) is the positive solution of the equation
b +c+f+r
d +e +g+s
* = ax +
(6)
If a < 1, then the only positive equilibrium point ã of Eq.(1) is given by
b +c+f +r
(1 – a) ( d + e + g+ s) *
(7)
F : (0, 00)5 → (0, 00) which
Let us now introduce a continuous function
is defined by
bui + cu2 + fu3 + ru4
F(uo, ..., u4) = auo +
(8)
dui + eu2 + gu3 + su4
Therefore it follows that
aF(u0,...,u4)
duo
= a,
aF(u0,...,us)
dui
6 (e u2+g uz+s u4) – d (c u2+f u3+r u4)
(d ui+e u2+g u3+su4)2
%3D
aF(u0,...,u4)
du2
c (d u1+g uz+s u4) – e (b u1+f u3+r u4)
(d u1+e u2+g u3+su4)²
ƏF(u0,...,u4)
duz
f (d u1+e u2+s u4)
- g (b u1+c u2+r u4)
%3D
(d u1+e u2+g u3+su4)²
ƏF(u0,...,u4)
r (d u1+e uz+g u3) – s (b u1+c u2+f u3)
(d u1+e uz+g u3+su4)²
Consequently, we get
ƏF(ĩ,...,T)
duo
= a = -
P4,
ƏF(ĩ,...,7)
(1–a)[b (e +g +s) – d (c +f +r)]
(d +e +g+s)(b +c +f+r)
= -
P3,
%3D
OF(ĩ,...,î)
du2
(1-a)[c (d +g +s) – e (b +f +r)]
(d +e +g+s)(b +c +f+r)
(9)
= -
P2,
%3D
ƏF(ĩ,...,¤)
du3
(1-a)[f (d +e +s) – g (b +c+r)]
(d +e +g+s)(b +c +f+r)
= -
P1,
aF(ĩ,…..,Ã)
du4
(1-a)[r (d +e +g) – s (b +c+f)]
(d +e +g+s)(b +c +f+r)
= -
Po.
%3D
Thus, the linearized equation of Eq.(1) about ã takes the form
Yn+1 + P4Yn + P3Yn-1+ P2Yn-2 + P1Yn-3 + Poyn-4
0,
(10)
%3D
The objective of this article is to investigate some qualitative behavior of
the solutions of the nonlinear difference equation
bxn-1+ cxn-2 + fxn-3+ran-4
dxn-1+ exn–2+ gxn-3 + sxn-4
Xn+1 = axn +
n = 0,1, 2, .. (1)
where the coefficients o b c de f arsf (0∞) while the initial con-
Transcribed Image Text:In this section, we study the local stability of the solutions of Eq.(1). The equilibrium point ã of Eq.(1) is the positive solution of the equation b +c+f+r d +e +g+s * = ax + (6) If a < 1, then the only positive equilibrium point ã of Eq.(1) is given by b +c+f +r (1 – a) ( d + e + g+ s) * (7) F : (0, 00)5 → (0, 00) which Let us now introduce a continuous function is defined by bui + cu2 + fu3 + ru4 F(uo, ..., u4) = auo + (8) dui + eu2 + gu3 + su4 Therefore it follows that aF(u0,...,u4) duo = a, aF(u0,...,us) dui 6 (e u2+g uz+s u4) – d (c u2+f u3+r u4) (d ui+e u2+g u3+su4)2 %3D aF(u0,...,u4) du2 c (d u1+g uz+s u4) – e (b u1+f u3+r u4) (d u1+e u2+g u3+su4)² ƏF(u0,...,u4) duz f (d u1+e u2+s u4) - g (b u1+c u2+r u4) %3D (d u1+e u2+g u3+su4)² ƏF(u0,...,u4) r (d u1+e uz+g u3) – s (b u1+c u2+f u3) (d u1+e uz+g u3+su4)² Consequently, we get ƏF(ĩ,...,T) duo = a = - P4, ƏF(ĩ,...,7) (1–a)[b (e +g +s) – d (c +f +r)] (d +e +g+s)(b +c +f+r) = - P3, %3D OF(ĩ,...,î) du2 (1-a)[c (d +g +s) – e (b +f +r)] (d +e +g+s)(b +c +f+r) (9) = - P2, %3D ƏF(ĩ,...,¤) du3 (1-a)[f (d +e +s) – g (b +c+r)] (d +e +g+s)(b +c +f+r) = - P1, aF(ĩ,…..,Ã) du4 (1-a)[r (d +e +g) – s (b +c+f)] (d +e +g+s)(b +c +f+r) = - Po. %3D Thus, the linearized equation of Eq.(1) about ã takes the form Yn+1 + P4Yn + P3Yn-1+ P2Yn-2 + P1Yn-3 + Poyn-4 0, (10) %3D The objective of this article is to investigate some qualitative behavior of the solutions of the nonlinear difference equation bxn-1+ cxn-2 + fxn-3+ran-4 dxn-1+ exn–2+ gxn-3 + sxn-4 Xn+1 = axn + n = 0,1, 2, .. (1) where the coefficients o b c de f arsf (0∞) while the initial con-
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,