16(8 – s²) Y(s) = s(s² + 16)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

(Differential Equation)
I have a Final exam on Wednesday. I need the solution not just the answer

L[y(x)] = Y(s) olmak üzere, y(x) 'e göre bir başlangıç değer problemine Laplace dönüşümü uygulandığında
aşağıda verilen denklem elde edilmiştir. Buna göre y(0) değerini bulunuz. [Let L[y(x)] = Y(s) the following
equation has been obtained when Laplace transformation has been applied to an initial value problem in y(x). Find
y(0)].
16(8 – s²)
Y(s)
s(s? + 16)
Lütfen birini seçin:
O -16
O 18
O 16
O -17
O -18
Transcribed Image Text:L[y(x)] = Y(s) olmak üzere, y(x) 'e göre bir başlangıç değer problemine Laplace dönüşümü uygulandığında aşağıda verilen denklem elde edilmiştir. Buna göre y(0) değerini bulunuz. [Let L[y(x)] = Y(s) the following equation has been obtained when Laplace transformation has been applied to an initial value problem in y(x). Find y(0)]. 16(8 – s²) Y(s) s(s? + 16) Lütfen birini seçin: O -16 O 18 O 16 O -17 O -18
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,