150. g of hot water (c = 4.184 J/g-K) at an initial temperature of 75.00 °C is mixed with 100. g of cold water at an initial temperature of 15.00 °C. Calculate the final temperature when thermal equilibrium is reached. O 51.0 °C 25.5 °C O 45.0 °C O 39.0 °C
150. g of hot water (c = 4.184 J/g-K) at an initial temperature of 75.00 °C is mixed with 100. g of cold water at an initial temperature of 15.00 °C. Calculate the final temperature when thermal equilibrium is reached. O 51.0 °C 25.5 °C O 45.0 °C O 39.0 °C
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
150. g of hot water (c = 4.184 J/g·K) at an initial temperature of 75.00 °C is mixed with 100. g of cold water at an initial temperature of 15.00 °C. Calculate the final temperature when thermal equilibrium is reached.
![**Question:**
150 g of hot water (c = 4.184 J/g·K) at an initial temperature of 75.00 °C is mixed with 100 g of cold water at an initial temperature of 15.00 °C. Calculate the final temperature when thermal equilibrium is reached.
**Options:**
- 51.0 °C
- 25.5 °C
- 45.0 °C
- 39.0 °C
**Explanation:**
This question involves calculating the equilibrium temperature when two masses of water at different temperatures are mixed. The specific heat capacity of water is given (4.184 J/g·K).
To solve, apply the principle of conservation of energy, where the heat lost by the hot water will equal the heat gained by the cold water. The formula used is:
\[ m_1 \times c \times (T_i - T_f) = m_2 \times c \times (T_f - T_i) \]
Where:
- \( m_1 \) and \( m_2 \) are the masses of the hot and cold water, respectively.
- \( T_i \) and \( T_f \) are the initial and final temperatures, respectively.
- \( c \) is the specific heat capacity.
Substitute the given values to find the final temperature \( T_f \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F840f535b-f075-49f5-9fe8-c5a30f6f8dd7%2Fbd083779-7947-4d3d-80ed-b752b661e308%2F0qazrq_processed.png&w=3840&q=75)
Transcribed Image Text:**Question:**
150 g of hot water (c = 4.184 J/g·K) at an initial temperature of 75.00 °C is mixed with 100 g of cold water at an initial temperature of 15.00 °C. Calculate the final temperature when thermal equilibrium is reached.
**Options:**
- 51.0 °C
- 25.5 °C
- 45.0 °C
- 39.0 °C
**Explanation:**
This question involves calculating the equilibrium temperature when two masses of water at different temperatures are mixed. The specific heat capacity of water is given (4.184 J/g·K).
To solve, apply the principle of conservation of energy, where the heat lost by the hot water will equal the heat gained by the cold water. The formula used is:
\[ m_1 \times c \times (T_i - T_f) = m_2 \times c \times (T_f - T_i) \]
Where:
- \( m_1 \) and \( m_2 \) are the masses of the hot and cold water, respectively.
- \( T_i \) and \( T_f \) are the initial and final temperatures, respectively.
- \( c \) is the specific heat capacity.
Substitute the given values to find the final temperature \( T_f \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY