15.76 Because peanut oil floats on the top of peanut butter, the peanut oil in many brands of peanut butter is hydrogenated and the solid is mixed into the peanut butter to give a product that does not separate. If a triacylglycerol in peanut oil that contains one oleic acid and two linoleic acids is completely hydrogenated, draw the condensed structural formula for the product. (15.3, 15.4)
15.76 Because peanut oil floats on the top of peanut butter, the peanut oil in many brands of peanut butter is hydrogenated and the solid is mixed into the peanut butter to give a product that does not separate. If a triacylglycerol in peanut oil that contains one oleic acid and two linoleic acids is completely hydrogenated, draw the condensed structural formula for the product. (15.3, 15.4)
Biochemistry
9th Edition
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Chapter1: Biochemistry: An Evolving Science
Section: Chapter Questions
Problem 1P
Related questions
Question

Transcribed Image Text:### Peanut Butter and Hydrogenation Process
#### Problem 15.76
Because peanut oil floats on the top of peanut butter, the peanut oil in many brands of peanut butter is hydrogenated and the solid is mixed into the peanut butter to give a product that does not separate. If a triacylglycerol in peanut oil that contains one oleic acid and two linoleic acids is completely hydrogenated, draw the condensed structural formula for the product. (15.3, 15.4)
---
**Explanation**:
This problem explores the process of hydrogenation used in the preparation of peanut butter to prevent the separation of oil. The hydrogenation process converts unsaturated fats into saturated fats by adding hydrogen atoms to the carbon-carbon double bonds.
In this case, the triacylglycerol in the peanut oil consists of one oleic acid (which has one double bond) and two linoleic acids (each having two double bonds). Complete hydrogenation means that all double bonds are converted into single bonds.
**Tasks**:
1. Identify the structure of oleic acid (a monounsaturated fatty acid) and linoleic acid (a polyunsaturated fatty acid).
2. Understand the process of complete hydrogenation converting double bonds to single bonds.
3. Draw the condensed structural formula of the hydrogenated product, which would be a triacylglycerol with all single bonds in the fatty acid chains.
For a visual representation, you would typically see a glycerol backbone with three fatty acid chains, where each fatty acid chain has no double bonds after hydrogenation. This ensures the resulting structure is more stable and solid at room temperature, preventing oil separation.
This problem links to sections 15.3 and 15.4, which likely cover the structure of fatty acids and the hydrogenation process in detail.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images

Recommended textbooks for you

Biochemistry
Biochemistry
ISBN:
9781319114671
Author:
Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:
W. H. Freeman

Lehninger Principles of Biochemistry
Biochemistry
ISBN:
9781464126116
Author:
David L. Nelson, Michael M. Cox
Publisher:
W. H. Freeman

Fundamentals of Biochemistry: Life at the Molecul…
Biochemistry
ISBN:
9781118918401
Author:
Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:
WILEY

Biochemistry
Biochemistry
ISBN:
9781319114671
Author:
Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:
W. H. Freeman

Lehninger Principles of Biochemistry
Biochemistry
ISBN:
9781464126116
Author:
David L. Nelson, Michael M. Cox
Publisher:
W. H. Freeman

Fundamentals of Biochemistry: Life at the Molecul…
Biochemistry
ISBN:
9781118918401
Author:
Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:
WILEY

Biochemistry
Biochemistry
ISBN:
9781305961135
Author:
Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:
Cengage Learning

Biochemistry
Biochemistry
ISBN:
9781305577206
Author:
Reginald H. Garrett, Charles M. Grisham
Publisher:
Cengage Learning

Fundamentals of General, Organic, and Biological …
Biochemistry
ISBN:
9780134015187
Author:
John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:
PEARSON