15. y" - 4y' + 3y = 0; y(0) = 1, y'(0) = 1/3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
15 only please.
```markdown
### Differential Equations Problems

#### Problems 13–20: Solve the Given Initial Value Problem

13. \( y'' + 2y' - 8y = 0; \quad y(0) = 3, \quad y'(0) = -12 \)

14. \( y'' + y' = 0; \quad y(0) = 2, \quad y'(0) = 1 \)

15. \( y'' - 4y' + 3y = 0; \quad y(0) = 1, \quad y'(0) = \frac{1}{3} \)

16. \( y'' - 4y' - 5y = 0; \quad y(-1) = 3, \quad y'(-1) = 9 \)

17. \( y'' - 6y' + 9y = 0; \quad y(0) = 2, \quad y'(0) = 3 \)

18. \( z'' - 2z' - 2z = 0; \quad z(0) = 0, \quad z'(0) = 3 \)

19. \( y'' + 2y' + y = 0; \quad y(0) = 1, \quad y'(0) = -3 \)

20. \( y'' - 4y' + 4y = 0; \quad y(1) = 1, \quad y'(1) = 1 \)

#### First-Order Constant-Coefficient Equations

21. 
(a) Substituting \( y = e^{rt} \), find the auxiliary equation for the first-order linear equation \( ay' + by = 0 \), where \( a \) and \( b \) are constants with \( a \neq 0 \).

(b) Use the result of part (a) to find the general solution.
```
Transcribed Image Text:```markdown ### Differential Equations Problems #### Problems 13–20: Solve the Given Initial Value Problem 13. \( y'' + 2y' - 8y = 0; \quad y(0) = 3, \quad y'(0) = -12 \) 14. \( y'' + y' = 0; \quad y(0) = 2, \quad y'(0) = 1 \) 15. \( y'' - 4y' + 3y = 0; \quad y(0) = 1, \quad y'(0) = \frac{1}{3} \) 16. \( y'' - 4y' - 5y = 0; \quad y(-1) = 3, \quad y'(-1) = 9 \) 17. \( y'' - 6y' + 9y = 0; \quad y(0) = 2, \quad y'(0) = 3 \) 18. \( z'' - 2z' - 2z = 0; \quad z(0) = 0, \quad z'(0) = 3 \) 19. \( y'' + 2y' + y = 0; \quad y(0) = 1, \quad y'(0) = -3 \) 20. \( y'' - 4y' + 4y = 0; \quad y(1) = 1, \quad y'(1) = 1 \) #### First-Order Constant-Coefficient Equations 21. (a) Substituting \( y = e^{rt} \), find the auxiliary equation for the first-order linear equation \( ay' + by = 0 \), where \( a \) and \( b \) are constants with \( a \neq 0 \). (b) Use the result of part (a) to find the general solution. ```
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,