14. The transient solution of the vibrating system y"+ 2y + 2y = cos cos 2t, y(0) = 0, y/(0) = 3 is: (a) y = et cos t +tesin t (b) y= ecost + %e* sin t (c) y = - cos 2t +sin 2t (d) y = Cie" cos t+ Cze sin t -t cos 2t + sin 2t (e) None of the above. 15. The steady-state solution of the vibrating system y"+ 4y + 8y = 6+ 10e", y(0) = 2, y'(0) = 1 is: (a) z = }Cje-2" cos 2t – e sin 2t (b) z = Ce cos 2t - (c) z+je (d) z =+ }e COS fe sin 21 ++ }e (e) None of the above.
14. The transient solution of the vibrating system y"+ 2y + 2y = cos cos 2t, y(0) = 0, y/(0) = 3 is: (a) y = et cos t +tesin t (b) y= ecost + %e* sin t (c) y = - cos 2t +sin 2t (d) y = Cie" cos t+ Cze sin t -t cos 2t + sin 2t (e) None of the above. 15. The steady-state solution of the vibrating system y"+ 4y + 8y = 6+ 10e", y(0) = 2, y'(0) = 1 is: (a) z = }Cje-2" cos 2t – e sin 2t (b) z = Ce cos 2t - (c) z+je (d) z =+ }e COS fe sin 21 ++ }e (e) None of the above.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
Need help with these questions

Transcribed Image Text:H EMCF-9-F20.dvi
x M AlIITestinstances
1 CourseWare
O a particular solution of y" 4y'
a casa.uh.edu/CourseWare2008/Root/Services/Drive/FileAttachmentDownload.ashx?fname=DEMCF-9-F20(-1)e4. ☆
O YouTube
O History
a Workspace Login
9 gazingle.com
vi
3 / 4
100%
13. An object in simple harmonic motion has period r. At time t=0, y(0) = 3, v(0) = 0.
The equation of motion is:
(a) y = 3 sin (6t+)
(b) y = 2 sin (8t + )
(c) y = 3 sin (8t +)
(d) y = 4 sin (6t + )
(e) None of the above.
14. The transient solution of the vibrating system
y" + 2y + 2y = cos 2t, y(0) = 0, y(0) = 3
is:
(a) y = te cos t+te sin t
(b) y = te cost + e sin t
(c) y = - cos 2t + sin 2t
(d) y = Chet cost+Czet sin t- + cos 2t + sin 2t
(e) None of the above.
MacBook Pro
DII
DD
F12
F3
%23
%24
&
2
3
4.
5
6.
8.
E
R.
T
U
G
V
B N M
94
HI
S'

Transcribed Image Text:I AllTestinstances
M CourseWare
O a particular solution of y" 4y
a casa.uh.edu/CourseWare2008/Root/Services/Drive/FileAttachmentDownload.ashx?fname=EMCF-9-F20(-1)e4.. ☆
ab 6
D YouTube
O History
A Workspace Login
9 gazingle.com
dvi
4 /4 -
100%
14. The transient solution of the vibrating system
y/"+ 2y/ + 2y = cos 2t, y(0) = 0, y/(0) = 3
is:
(a) y =te-t cost+tesin t
(b) y = e cost+et sint
(c) y = - cos 2t + sin 2t
(d) y = Cjet cos t+Cze-t sin t -+ cos 2t + sin 2t
(e) None of the above.
15. The steady-state solution of the vibrating system
y" + 4y/ + 8y = 6 + 10e", y(0) = 2, y(0) = 1
is:
(a) z = Ce-4 cos 2t – e-t sin 2t
(b) z = Che-4 cos 2t – e-t sin 2t + + }e2t
(0) z%3D%3 + 2리
(d) z = +}et
(e) None of the above.
MacBook Pro
FB
F12
F3
%24
*
23
2
3
4.
5
7
8.
9
E
T
Y
U
D
F
G
J
K
V
B N
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

