14. If A,B and C are sets, then (AUB)-C=(A-C)u(B-C).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Prove the following
Answer #14 only
![11. If A and B are sets in a universal set U, then AUB=AnB.
12. If A,B and C are sets, then A- (BOC)=(A-B)u(A-C).
13. If A,B and C are sets, then A-(BUC)=(A-B) n(A-C).
14. If A,B and C are sets, then (AUB)-C=(A-C)u(B-C).
15. If A,B
and C are sets, then (AnB)-C=(A-C)n(B-C).
16. If A, B and C are sets, then Ax (BUC) = (A x B)U(AXC).
17. If A,B and C are sets, then Ax (BOC) = (A x B) n(Ax C).
18. If A, B and C are sets, then Ax (B-C) = (A x B)-(A x C).
19. Prove that {9":ne Z} = {3":ne Z}, but {9" : ne Z} # {3":n€Z}
20. Prove that {9":ne Q} = {3":ne Q}.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fcd3ec7d8-9c0b-4838-b1ac-98e465a7f0e1%2Fac96b676-d3b0-4094-949f-89d88df44b0e%2Fzvmm78k_processed.jpeg&w=3840&q=75)
Transcribed Image Text:11. If A and B are sets in a universal set U, then AUB=AnB.
12. If A,B and C are sets, then A- (BOC)=(A-B)u(A-C).
13. If A,B and C are sets, then A-(BUC)=(A-B) n(A-C).
14. If A,B and C are sets, then (AUB)-C=(A-C)u(B-C).
15. If A,B
and C are sets, then (AnB)-C=(A-C)n(B-C).
16. If A, B and C are sets, then Ax (BUC) = (A x B)U(AXC).
17. If A,B and C are sets, then Ax (BOC) = (A x B) n(Ax C).
18. If A, B and C are sets, then Ax (B-C) = (A x B)-(A x C).
19. Prove that {9":ne Z} = {3":ne Z}, but {9" : ne Z} # {3":n€Z}
20. Prove that {9":ne Q} = {3":ne Q}.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)