13. The position vector of a particle at time t is R = cos (t – 1) i + sinh (t – 1) j+ atk. If at t = 1, the acceleration of the particle be perpendicular to its position vector, then a is equal to (a) 0 (b) 1 1 (c) (d) JE (AMIETE, Dec. 2009) Ans. (d)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
13. The position vector of a particle at time t is R = cos (t – 1) i + sinh (t – 1) j + ark. If at t = 1,
the acceleration of the particle be perpendicular to its position vector, then a is equal to
1
(a) 0
(b) 1
(c)
2
(d)
(AMIETE, Dec. 2009) Ans. (d)
Transcribed Image Text:13. The position vector of a particle at time t is R = cos (t – 1) i + sinh (t – 1) j + ark. If at t = 1, the acceleration of the particle be perpendicular to its position vector, then a is equal to 1 (a) 0 (b) 1 (c) 2 (d) (AMIETE, Dec. 2009) Ans. (d)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Indefinite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,