6. A particle moves with position function S(t) = – 2? + 31, t0 [T:3] a) Determine the velocity of the motion at 3 seconds b) Determine the acceleration of the motion at 3 seconds
6. A particle moves with position function S(t) = – 2? + 31, t0 [T:3] a) Determine the velocity of the motion at 3 seconds b) Determine the acceleration of the motion at 3 seconds
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
6
![**Problem 6.**
A particle moves with position function \( S(t) = \frac{1}{4}t^4 - 2t^2 + 3t \), \( t \geq 0 \).
a) Determine the velocity of the motion at 3 seconds.
b) Determine the acceleration of the motion at 3 seconds.
**Solution Explanation:**
To solve this problem, we need to find the velocity and acceleration functions of a particle described by the given position function \( S(t) = \frac{1}{4}t^4 - 2t^2 + 3t \).
1. **Velocity**: The velocity of a particle is the first derivative of the position function with respect to time \( t \). Calculate the derivative \( S'(t) \).
2. **Acceleration**: The acceleration of a particle is the derivative of the velocity function, or the second derivative of the position function. Calculate the derivative \( S''(t) \).
Substitute \( t = 3 \) seconds into these derivative expressions to find the velocity and acceleration at this specific time.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6828e5e3-cbe5-4b29-a95c-c40eea32f666%2F20d15aa4-302a-47da-bb76-1bd244c483a9%2Fcc29q9_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem 6.**
A particle moves with position function \( S(t) = \frac{1}{4}t^4 - 2t^2 + 3t \), \( t \geq 0 \).
a) Determine the velocity of the motion at 3 seconds.
b) Determine the acceleration of the motion at 3 seconds.
**Solution Explanation:**
To solve this problem, we need to find the velocity and acceleration functions of a particle described by the given position function \( S(t) = \frac{1}{4}t^4 - 2t^2 + 3t \).
1. **Velocity**: The velocity of a particle is the first derivative of the position function with respect to time \( t \). Calculate the derivative \( S'(t) \).
2. **Acceleration**: The acceleration of a particle is the derivative of the velocity function, or the second derivative of the position function. Calculate the derivative \( S''(t) \).
Substitute \( t = 3 \) seconds into these derivative expressions to find the velocity and acceleration at this specific time.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning