13. If 180° ≤ 0 ≤ 270° and cos 0 Cos os 블. 8 10' find

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
### Problem Statement:
**13.** If \( 180^\circ \leq \theta \leq 270^\circ \) and \( \cos \theta = -\frac{8}{10} \), find \( \cos \frac{\theta}{2} \).

---

### Analysis:
The problem requires calculating the cosine of half the angle given certain conditions about the original angle. Specifically, it provides a range for \(\theta\) and the cosine value of \(\theta\).

#### Steps to Solve:
1. **Range of \(\theta\)**: The angle \(\theta\) is in the third quadrant since \(180^\circ \leq \theta \leq 270^\circ\). In this quadrant, the cosine of \(\theta\) is negative.
2. **Calculate \(\cos \frac{\theta}{2}\)**: To find this value, we use the half-angle formula for cosine.

#### Half-Angle Formula for Cosine:
\[ \cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}} \]

Since \(\theta\) is in the third quadrant, \(\frac{\theta}{2}\) will fall within the range \(90^\circ \leq \frac{\theta}{2} \leq 135^\circ\), which corresponds to the second quadrant where cosine is negative. Thus, we will take the negative root.

3. **Substitute the Given Value**:
   \[ \cos \theta = -\frac{8}{10} = -0.8 \]

4. **Apply the Formula**:
   \[ \cos \frac{\theta}{2} = -\sqrt{\frac{1 - 0.8}{2}} \]
   \[ \cos \frac{\theta}{2} = -\sqrt{\frac{0.2}{2}} \]
   \[ \cos \frac{\theta}{2} = -\sqrt{0.1} \]
   \[ \cos \frac{\theta}{2} = -\sqrt{\frac{1}{10}} \]
   \[ \cos \frac{\theta}{2} = -\frac{1}{\sqrt{10}} \]
   \[ \cos \frac{\theta}{2} = -\frac{\sqrt{10}}{10} \]
Transcribed Image Text:### Problem Statement: **13.** If \( 180^\circ \leq \theta \leq 270^\circ \) and \( \cos \theta = -\frac{8}{10} \), find \( \cos \frac{\theta}{2} \). --- ### Analysis: The problem requires calculating the cosine of half the angle given certain conditions about the original angle. Specifically, it provides a range for \(\theta\) and the cosine value of \(\theta\). #### Steps to Solve: 1. **Range of \(\theta\)**: The angle \(\theta\) is in the third quadrant since \(180^\circ \leq \theta \leq 270^\circ\). In this quadrant, the cosine of \(\theta\) is negative. 2. **Calculate \(\cos \frac{\theta}{2}\)**: To find this value, we use the half-angle formula for cosine. #### Half-Angle Formula for Cosine: \[ \cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}} \] Since \(\theta\) is in the third quadrant, \(\frac{\theta}{2}\) will fall within the range \(90^\circ \leq \frac{\theta}{2} \leq 135^\circ\), which corresponds to the second quadrant where cosine is negative. Thus, we will take the negative root. 3. **Substitute the Given Value**: \[ \cos \theta = -\frac{8}{10} = -0.8 \] 4. **Apply the Formula**: \[ \cos \frac{\theta}{2} = -\sqrt{\frac{1 - 0.8}{2}} \] \[ \cos \frac{\theta}{2} = -\sqrt{\frac{0.2}{2}} \] \[ \cos \frac{\theta}{2} = -\sqrt{0.1} \] \[ \cos \frac{\theta}{2} = -\sqrt{\frac{1}{10}} \] \[ \cos \frac{\theta}{2} = -\frac{1}{\sqrt{10}} \] \[ \cos \frac{\theta}{2} = -\frac{\sqrt{10}}{10} \]
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning