10. If 0° 0 0° ≤ 0 ≤ 3 ne = , find cos(20) 5 ≤ 90° and sine

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
**Trigonometry Problem**

**Problem:**

10. If \(0^\circ \leq \theta \leq 90^\circ\) and \(\sin\theta = \frac{3}{5}\), find \(\cos(2\theta)\).

**Solution:**

Given that \(\sin\theta = \frac{3}{5}\), we can use the Pythagorean identity to find \(\cos\theta\). The Pythagorean identity states:

\[
\sin^2\theta + \cos^2\theta = 1
\]

Substituting the given value of \(\sin\theta\):

\[
\left(\frac{3}{5}\right)^2 + \cos^2\theta = 1
\]

Simplifying:

\[
\frac{9}{25} + \cos^2\theta = 1
\]

Next, solve for \(\cos^2\theta\):

\[
\cos^2\theta = 1 - \frac{9}{25}
\]

\[
\cos^2\theta = \frac{25}{25} - \frac{9}{25}
\]

\[
\cos^2\theta = \frac{16}{25}
\]

Take the square root of both sides to find \(\cos\theta\):

\[
\cos\theta = \pm\frac{4}{5}
\]

Since \(0^\circ \leq \theta \leq 90^\circ\), \(\cos\theta\) is positive, so:

\[
\cos\theta = \frac{4}{5}
\]

Now, we need to find \(\cos(2\theta)\). Using the double-angle formula for cosine:

\[
\cos(2\theta) = 2\cos^2\theta - 1
\]

Substitute \(\cos\theta = \frac{4}{5}\):

\[
\cos(2\theta) = 2 \left(\frac{4}{5}\right)^2 - 1
\]

\[
\cos(2\theta) = 2 \left(\frac{16}{25}\right) - 1
\]

\[
\cos(2\theta) = \frac{32}{25} - 1
\]

\[
\cos(2\
Transcribed Image Text:**Trigonometry Problem** **Problem:** 10. If \(0^\circ \leq \theta \leq 90^\circ\) and \(\sin\theta = \frac{3}{5}\), find \(\cos(2\theta)\). **Solution:** Given that \(\sin\theta = \frac{3}{5}\), we can use the Pythagorean identity to find \(\cos\theta\). The Pythagorean identity states: \[ \sin^2\theta + \cos^2\theta = 1 \] Substituting the given value of \(\sin\theta\): \[ \left(\frac{3}{5}\right)^2 + \cos^2\theta = 1 \] Simplifying: \[ \frac{9}{25} + \cos^2\theta = 1 \] Next, solve for \(\cos^2\theta\): \[ \cos^2\theta = 1 - \frac{9}{25} \] \[ \cos^2\theta = \frac{25}{25} - \frac{9}{25} \] \[ \cos^2\theta = \frac{16}{25} \] Take the square root of both sides to find \(\cos\theta\): \[ \cos\theta = \pm\frac{4}{5} \] Since \(0^\circ \leq \theta \leq 90^\circ\), \(\cos\theta\) is positive, so: \[ \cos\theta = \frac{4}{5} \] Now, we need to find \(\cos(2\theta)\). Using the double-angle formula for cosine: \[ \cos(2\theta) = 2\cos^2\theta - 1 \] Substitute \(\cos\theta = \frac{4}{5}\): \[ \cos(2\theta) = 2 \left(\frac{4}{5}\right)^2 - 1 \] \[ \cos(2\theta) = 2 \left(\frac{16}{25}\right) - 1 \] \[ \cos(2\theta) = \frac{32}{25} - 1 \] \[ \cos(2\
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning