13. f + 2° + 3? + ·.. + n² = n(n + 1) (2n + 1) 14. f + 23 + 33 + ... + n² = n² (n + 1)? 15. 4 + 3 + 2 + ... + (5 – n) = ;n(9 – n) 1 (9 — п) (n + 1) = --n(n + 3) 16. -2 – 3 – 4 – -... - 17. 1.2 + 2.3 + 3•4 + · .. + n(n + 1) = -n(n+ 1) (n+ 2) 18. 1.2+3.4 + 5•6+ • · · + (2n –- 1) (2n) =n(n+1)(4n– 1)
13. f + 2° + 3? + ·.. + n² = n(n + 1) (2n + 1) 14. f + 23 + 33 + ... + n² = n² (n + 1)? 15. 4 + 3 + 2 + ... + (5 – n) = ;n(9 – n) 1 (9 — п) (n + 1) = --n(n + 3) 16. -2 – 3 – 4 – -... - 17. 1.2 + 2.3 + 3•4 + · .. + n(n + 1) = -n(n+ 1) (n+ 2) 18. 1.2+3.4 + 5•6+ • · · + (2n –- 1) (2n) =n(n+1)(4n– 1)
Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
Related questions
Topic Video
Question
use the Principle of Mathematical Induction to show that the given statement is true for all natural numbers n.
![13. f + 2° + 3? + ·.. + n² = n(n + 1) (2n + 1)
14. f + 23 + 33 + ... + n² =
n² (n + 1)?
15. 4 + 3 + 2 + ... + (5 – n) = ;n(9 – n)
1 (9 — п)
(n + 1) = --n(n + 3)
16. -2 – 3 – 4 –
-... -
17. 1.2 + 2.3 + 3•4 + · .. + n(n + 1) = -n(n+ 1) (n+ 2)
18. 1.2+3.4 + 5•6+ • · · + (2n –- 1) (2n) =n(n+1)(4n– 1)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fafa6fbd1-79d8-41da-8d76-0f495e9ac1a1%2F2291f6ec-43e6-4dd4-8066-76ecbb7463a1%2Falabp7h_processed.png&w=3840&q=75)
Transcribed Image Text:13. f + 2° + 3? + ·.. + n² = n(n + 1) (2n + 1)
14. f + 23 + 33 + ... + n² =
n² (n + 1)?
15. 4 + 3 + 2 + ... + (5 – n) = ;n(9 – n)
1 (9 — п)
(n + 1) = --n(n + 3)
16. -2 – 3 – 4 –
-... -
17. 1.2 + 2.3 + 3•4 + · .. + n(n + 1) = -n(n+ 1) (n+ 2)
18. 1.2+3.4 + 5•6+ • · · + (2n –- 1) (2n) =n(n+1)(4n– 1)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elementary Geometry For College Students, 7e](https://www.bartleby.com/isbn_cover_images/9781337614085/9781337614085_smallCoverImage.jpg)
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
![Elementary Geometry for College Students](https://www.bartleby.com/isbn_cover_images/9781285195698/9781285195698_smallCoverImage.gif)
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning
![Elementary Geometry For College Students, 7e](https://www.bartleby.com/isbn_cover_images/9781337614085/9781337614085_smallCoverImage.jpg)
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
![Elementary Geometry for College Students](https://www.bartleby.com/isbn_cover_images/9781285195698/9781285195698_smallCoverImage.gif)
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning