13. Briefly explain the difference between taking a left sum and the limit of a left sum as the number of rectangles goes to infinity in regard to finding the area under a curve (as discussed in class).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
13. Briefly explain the difference between taking a left sum and the limit of a left sum as the number of rectangles goes to infinity in regard to finding the area under a curve (as discussed in class).
Transcribed Image Text:13. Briefly explain the difference between taking a left sum and the limit of a left sum as the number of rectangles goes to infinity in regard to finding the area under a curve (as discussed in class).
Expert Solution
Step 1

Riemann sumThe given domain, x ∈[a,b] is sub divided into 'n' small intervals of width∆x. x =b-an Starting from xi where i = 0,1,2,...,n-1,n. S = i=1nfxi*xiFor Left sum :xi* = xi-1For Right sum :xi* = xi

Step 2

For increasing functionFor left sum:The height of rectangle,f(xi-1) is equal to f(x) at left end of the rectangle.But for xi-1 to xi-1+x, the height of rectangle is always lower than f(x).Hence the area covered or calculated under this sum is lower than the actual area under f(x) curve. For Right sum:The height of rectangle,f(xi) is equal to f(x) at Right end of the rectangle.But for xi to xi-x, the height of rectangle is always higher than f(x).Hence the area covered or calculated under this sum is higher than the actual area under f(x) curve. 

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Limits and Continuity
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning