13) Write a program to implement the process illustrated in the figure below. The sequence of operation is to be as follows: • Normally open start and normally closed stop pushbuttons are used to start and stop the process. • When the start button is pressed, solenoid A energizes to start filling the tank. • As the tank fills, the empty level sensor switch closes. • When the tank is full, the full level sensor switch closes. • Solenoid A is de-energized. • The agitate motor starts automatically and runs for 3 min to mix the liquid. 15 • When the agitate motor stops, solenoid B is energized to empty the tank. • When the tank is completely empty, the empty sensor switch opens to de-energize solenoid B. • The start button is pressed to repeat the sequence.
13) Write a program to implement the process illustrated in the figure below. The sequence of operation is to be as follows: • Normally open start and normally closed stop pushbuttons are used to start and stop the process. • When the start button is pressed, solenoid A energizes to start filling the tank. • As the tank fills, the empty level sensor switch closes. • When the tank is full, the full level sensor switch closes. • Solenoid A is de-energized. • The agitate motor starts automatically and runs for 3 min to mix the liquid. 15 • When the agitate motor stops, solenoid B is energized to empty the tank. • When the tank is completely empty, the empty sensor switch opens to de-energize solenoid B. • The start button is pressed to repeat the sequence.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:13) Write a program to implement the process illustrated in the figure below. The sequence
of operation is to be as follows:
• Normally open start and normally closed stop pushbuttons are used to start and stop the
process.
• When the start button is pressed, solenoid A energizes to start filling the tank.
• As the tank fills, the empty level sensor switch closes.
• When the tank is full, the full level sensor switch closes.
• Solenoid A is de-energized.
• The agitate motor starts automatically and runs for 3 min to mix the liquid.
15
• When the agitate motor stops, solenoid B is energized to empty the tank.
• When the tank is completely empty, the empty sensor switch opens to de-energize
solenoid B
• The start button is pressed to repeat the sequence.
SOL A
Motor
Full
sensor
switch
Empty
sensor
switch
+SOL B
Start/stop
control station
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY