125 mm | B The blade of an oscillating fan and the rotor of its motor shown have a total weight of 1 kg and a combined radius of gyration (for all axes) of 100 mm. They are supported by bearings at A and B, 125 mm apart, and rotate at the rate w¡ = 2000 rpm. Determine; a) the dynamic reactions at A and B when the motor casing has an angular velocity m2 = (0.5 j+1.5 k) rad/s. b) the static reactions at A and B when the fan has stopped. Note: Assume that the center of mass of the entire system is between the middle of the bearings of A and B, that is 62.5 mm away from bearing A.
125 mm | B The blade of an oscillating fan and the rotor of its motor shown have a total weight of 1 kg and a combined radius of gyration (for all axes) of 100 mm. They are supported by bearings at A and B, 125 mm apart, and rotate at the rate w¡ = 2000 rpm. Determine; a) the dynamic reactions at A and B when the motor casing has an angular velocity m2 = (0.5 j+1.5 k) rad/s. b) the static reactions at A and B when the fan has stopped. Note: Assume that the center of mass of the entire system is between the middle of the bearings of A and B, that is 62.5 mm away from bearing A.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
The blade of an oscillating fan and the rotor of its motor shown have a total
weight of 1 kg and a combined radius of gyration (for all axes) of 100 mm. They are
supported by bearings at A and B, 125 mm apart, and rotate at the rate ω1 = 2000 rpm.
Determine;
a) the dynamic reactions at A and B when the motor casing has an angular velocity ω2 =
(0.5 j+1.5 k) rad/s.
b) the static reactions at A and B when the fan has stopped.
Note: Assume that the center of mass of the entire system is between the middle of the
bearings of A and B, that is 62.5 mm away from bearing A.
![125 mm
The blade of an oscillating fan and the rotor of its motor shown have a total
weight of 1 kg and a combined radius of gyration (for all axes) of 100 mm. They are
supported by bearings at A and B, 125 mm apart, and rotate at the rate o = 2000 rpm.
Determine;
a) the dynamic reactions at A and B when the motor casing has an angular velocity w2 =
(0.5 j+1.5 k) rad/s.
b) the static reactions at A and B when the fan has stopped.
Note: Assume that the center of mass of the entire system is between the middle of the
bearings of A and B, that is 62.5 mm away from bearing A.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3c7dcfe6-6157-4ffc-a234-7073476159eb%2Fff494447-4903-4579-9a07-3616b2284d79%2Fs71p08u_processed.png&w=3840&q=75)
Transcribed Image Text:125 mm
The blade of an oscillating fan and the rotor of its motor shown have a total
weight of 1 kg and a combined radius of gyration (for all axes) of 100 mm. They are
supported by bearings at A and B, 125 mm apart, and rotate at the rate o = 2000 rpm.
Determine;
a) the dynamic reactions at A and B when the motor casing has an angular velocity w2 =
(0.5 j+1.5 k) rad/s.
b) the static reactions at A and B when the fan has stopped.
Note: Assume that the center of mass of the entire system is between the middle of the
bearings of A and B, that is 62.5 mm away from bearing A.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY